Insights into the binding of Ag ions with SilE model peptides: an NMR and MS coupled approach

Author:

Zingale Gabriele Antonio1ORCID,Oliveri Valentina2ORCID,Grasso Giuseppe2ORCID

Affiliation:

1. IRCCS-Fondazione Bietti , Rome , Italy

2. Department of Chemical Sciences, University of Catania , Catania , Italy

Abstract

Abstract The diffuse and renewed use of silver as antimicrobial agent has caused the development of resistance to silver ions in some bacterial strains, posing a serious threat for health systems. In order to cast light on the mechanistic features of resistance, here, we aimed to understand how silver interacts with the periplasmic metal-binding protein SilE which is engaged in bacterial silver detoxification. This aim was addressed by studying two peptide portions of SilE sequence (SP2 and SP3) that contain the putative motifs involved in Ag+ binding. We demonstrate that SP2 model peptide is involved in silver binding through its histidine and methionine residues in the two HXXM binding sites. In particular, the first binding site is supposed to bind the Ag+ ion in a linear fashion, while the second binding site complexes the silver ion in a distorted trigonal planar fashion. We propose a model where the SP2 peptide binds two silver ions when the concentration ratio Ag+/SP2 is ≥10.0. We also suggest that the two binding sites of SP2 have different affinity for silver. This evidence comes from the change in the path direction of the Nuclear Magnetic Resonance (NMR) cross-peaks upon the addition of Ag+. Here, we report the conformational changes of SilE model peptides occurring upon silver binding, monitored at a deep level of molecular details. This was addressed by a multifaceted approach, combining NMR, circular dichroism, and mass spectrometry experiments.

Funder

LazioInnova

Publisher

Oxford University Press (OUP)

Subject

Metals and Alloys,Biochemistry,Biomaterials,Biophysics,Chemistry (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3