Cellulosic copper nanoparticles and a hydrogen peroxide–based disinfectant trigger rapid inactivation of pseudoviral particles expressing the Spike protein of SARS-CoV-2, SARS-CoV, and MERS-CoV

Author:

Brault Ariane1,Néré Raphael1,Prados Jérôme1,Boudreault Simon1,Bisaillon Martin1ORCID,Marchand Patrick2,Couture Patrick2,Labbé Simon1

Affiliation:

1. Département de Biochimie et de Génomique Fonctionnelle, Faculté de médecine et des sciences de la santé, Université de Sherbrooke , Sherbrooke, QC, J1E 4K8, Canada

2. SaniMarc Group , Victoriaville, QC, G6P 7E3, Canada

Abstract

Abstract Severe acute respiratory syndrome (SARS) is a viral respiratory infection caused by human coronaviruses that include SARS-CoV-2, SARS-CoV, and Middle East respiratory syndrome coronavirus (MERS-CoV). Although their primary mode of transmission is through contaminated respiratory droplets from infected carriers, the deposition of expelled virus particles onto surfaces and fomites could contribute to viral transmission. Here, we use replication-deficient murine leukemia virus (MLV) pseudoviral particles expressing SARS-CoV-2, SARS-CoV, or MERS-CoV Spike (S) protein on their surface. These surrogates of native coronavirus counterparts serve as a model to analyze the S-mediated entry into target cells. Carboxymethyl cellulose (CMC) nanofibers that are combined with copper (Cu) exhibit strong antimicrobial properties. S-pseudovirions that are exposed to CMC–Cu nanoparticles (30 s) display a dramatic reduction in their ability to infect target Vero E6 cells, with ∼97% less infectivity as compared to untreated pseudovirions. In contrast, addition of the Cu chelator tetrathiomolybdate protects S-pseudovirions from CMC–Cu-mediated inactivation. When S-pseudovirions were treated with a hydrogen peroxide–based disinfectant (denoted SaberTM) used at 1:250 dilution, their infectivity was dramatically reduced by ∼98%. However, the combined use of SaberTM and CMC–Cu is the most effective approach to restrict infectivity of SARS-CoV-2-S, SARS-CoV-S, and MERS-CoV-S pseudovirions in Vero E6 cell assays. Together, these results show that cellulosic Cu nanoparticles enhance the effectiveness of diluted SaberTM sanitizer, setting up an improved strategy to lower the risk of surface- and fomite-mediated transmission of enveloped respiratory viruses.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

Oxford University Press (OUP)

Subject

Metals and Alloys,Biochemistry,Biomaterials,Biophysics,Chemistry (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Mechanisms of action of microbicides commonly used in infection prevention and control;Microbiology and Molecular Biology Reviews;2024-07-03

2. Treatment of severe COVID-19: an evolving paradigm;Expert Opinion on Pharmacotherapy;2022-10-28

3. Disinfection and decontamination in the context of SARS‐CoV‐2‐specific data;Journal of Medical Virology;2022-07-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3