(Pro)renin receptor and insulin signalling regulate cell proliferation in MCF-7 breast cancer cells

Author:

Sato Shigemitsu1,Hirose Takuo123ORCID,Ohba Koji1,Watanabe Fumihiko1,Watanabe Tomoki1,Minato Kazuya1,Endo Akari12,Ito Hiroki12,Mori Takefumi23,Takahashi Kazuhiro1ORCID

Affiliation:

1. Tohoku University Graduate School of Medicine Department of Endocrinology and Applied Medical Science, , Sendai, Japan

2. Tohoku Medical and Pharmaceutical University Division of Nephrology and Endocrinology, Faculty of Medicine, , Sendai, Japan

3. Tohoku Medical and Pharmaceutical University Division of Integrative Renal Replacement Therapy, Faculty of Medicine, , Sendai, Japan

Abstract

Abstract (Pro)renin receptor [(P)RR] is related to both the renin-angiotensin system and V-ATPase with various functions including stimulation of cell proliferation. (P)RR is implicated in the pathophysiology of diabetes mellitus and cancer. Hyperinsulinemia is observed in obesity-related breast cancer. However, the relationship between (P)RR and insulin has not been clarified. We have therefore studied the effect of insulin on (P)RR expression, cell viability and AKT phosphorylation under the conditions with and without (P)RR knockdown. Effects of insulin were studied in a human breast cancer cell line, MCF-7. Cell proliferation assay was performed by WST-8 assay. (P)RR expression was suppressed by (P)RR-specific siRNAs. The treated cells were analysed by western blotting and reverse transcriptase-quantitative polymerase chain reaction analysis. Insulin stimulated proliferation of MCF-7 cells and increased (P)RR protein expression, but not (P)RR mRNA levels. Moreover, autophagy flux was suppressed by insulin. Suppression of (P)RR expression reduced cell number of MCF-7 cells and AKT phosphorylation significantly in both the presence and the absence of insulin, indicating that (P)RR is important for cell viability and AKT phosphorylation. In conclusion, insulin upregulates the level of (P)RR protein, which is important for cell viability, proliferation, AKT phosphorylation and autophagy in breast cancer cells.

Publisher

Oxford University Press (OUP)

Subject

Molecular Biology,Biochemistry,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3