TT-pocket/HIRAN: binding to 3′-terminus of DNA for recognition and processing of stalled replication forks

Author:

Masai Hisao1

Affiliation:

1. Tokyo Metropolitan Institute of Medical Science Department of Basic Medical Sciences, , 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan

Abstract

Abstract Stalled replication forks need to be swiftly detected and protected from collapse and the cause for fork stall be removed to restore the active replication fork. In bacteria, stalled forks are recognized and stabilized by PriA, a DEXH-type helicase, which also facilitates reassembly of an active replication fork. A TT-pocket (three-prime terminus binding pocket) present in the N-terminal segment of PriA plays a crucial role in stabilization of the stalled forks by specifically binding to the 3$^\prime$-terminus of the nascent leading strand. Eukaryotic proteins, Rad5/HLTF, contain a TT-pocket related domain, HIRAN, that specifically binds to 3′-terminus of DNA and play a role in stalled fork processing. While the TT-pocket of PriA facilitates the formation of an apparently stable and immobile complex on a fork with a 3′-terminus at the fork junction, HIRAN of Rad5/HLTF facilitates fork regression by itself. A recent report shows that HIRAN can displace 3 nucleotides at the end of the duplex DNA, providing mechanistic insight into how stalled forks are reversed in eukaryotes. In this article, I will compare the roles of 3′-terminus binding domains in stalled fork processing in prokaryotes and in eukaryotes.

Funder

the Japanese Society for the Promotion of Science

Publisher

Oxford University Press (OUP)

Subject

Molecular Biology,Biochemistry,General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Replicon hypothesis revisited;Biochemical and Biophysical Research Communications;2022-12

2. Apprehending the NAD+–ADPr-Dependent Systems in the Virus World;Viruses;2022-09-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3