The “Super-Child” Approach Is Applied To Estimate Retinol Kinetics and Vitamin A Total Body Stores in Mexican Preschoolers

Author:

Lopez-Teros Veronica1ORCID,Ford Jennifer L2ORCID,Green Michael H2ORCID,Monreal-Barraza Brianda3,García-Miranda Lilian1,Tanumihardjo Sherry A4ORCID,Valencia Mauro E1ORCID,Astiazaran-Garcia Humberto3ORCID

Affiliation:

1. Posgrado en Ciencias de la Salud (PCS), Universidad de Sonora, Hermosillo, Sonora, Mexico

2. Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA, USA

3. Department of Nutrition, Research Center for Food and Development, Hermosillo, Sonora, Mexico

4. Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, WI, USA

Abstract

ABSTRACT Background Retinol isotope dilution (RID) and model-based compartmental analysis are recognized techniques for assessing vitamin A (VA) status. Recent studies have shown that RID predictions of VA total body stores (TBS) can be improved by using modeling and that VA kinetics and TBS in children can be effectively studied by applying population modeling (“super-child” approach) to a composite data set. Objectives The objectives were to model whole-body retinol kinetics and predict VA TBS in a group of Mexican preschoolers using the super-child approach and to use model predictions of RID coefficients to estimate TBS by RID in individuals. Methods Twenty-four healthy Mexican children (aged 3–6 y) received an oral dose (2.96 μmol) of [13C10]retinyl acetate in corn oil. Blood samples were collected from 8 h to 21 d after dosing, with each child sampled at 4 d and at 1 other time. Composite data for plasma labeled retinol compared with time were analyzed using a 6-component model to obtain group retinol kinetic parameters and pool sizes. Model-predicted TBS was compared with mean RID predictions at 4 d; RID estimates at 4 d were compared with those calculated at 7–21 d. Results Model-predicted TBS was 1097 μmol, equivalent to ∼2.4 y-worth of VA; using model-derived coefficients, group mean RID-predicted TBS was 1096 μmol (IQR: 836–1492 μmol). TBS at 4 d compared with a later time was similar (P = 0.33). The model predicted that retinol spent 1.5 h in plasma during each transit and recycled to plasma 13 times before utilization. Conclusions The super-child modeling approach provides information on whole-body VA kinetics and can be used with RID to estimate TBS at any time between 4 and 21 d postdose. The high TBS predicted for these children suggests positive VA balance, likely due to large-dose VA supplements, and warrants further investigation.

Funder

International Atomic Energy Agency

National Research and Technology Council

CONACYT

Publisher

Oxford University Press (OUP)

Subject

Nutrition and Dietetics,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3