Embryo selection through artificial intelligence versus embryologists: a systematic review

Author:

Salih M12ORCID,Austin C12ORCID,Warty R R1ORCID,Tiktin C3ORCID,Rolnik D L14ORCID,Momeni M1ORCID,Rezatofighi H25ORCID,Reddy S6ORCID,Smith V1ORCID,Vollenhoven B147ORCID,Horta F158ORCID

Affiliation:

1. Department of Obstetrics and Gynaecology, Monash University , Clayton, Victoria, Australia

2. Department of Data Science and Artificial Intelligence, Faculty of Information Technology, Monash University , Clayton, Victoria, Australia

3. School of Engineering, RMIT University , Melbourne, Victoria, Australia

4. Women’s and Newborn Program, Monash Health , Melbourne, Victoria, Australia

5. Monash Data Future Institute, Monash University , Clayton, Victoria, Australia

6. School of Medicine, Deakin University , Geelong, Victoria, Australia

7. Monash IVF , Melbourne, Victoria, Australia

8. City Fertility , Melbourne, Victoria, Australia

Abstract

Abstract STUDY QUESTION What is the present performance of artificial intelligence (AI) decision support during embryo selection compared to the standard embryo selection by embryologists? SUMMARY ANSWER AI consistently outperformed the clinical teams in all the studies focused on embryo morphology and clinical outcome prediction during embryo selection assessment. WHAT IS KNOWN ALREADY The ART success rate is ∼30%, with a worrying trend of increasing female age correlating with considerably worse results. As such, there have been ongoing efforts to address this low success rate through the development of new technologies. With the advent of AI, there is potential for machine learning to be applied in such a manner that areas limited by human subjectivity, such as embryo selection, can be enhanced through increased objectivity. Given the potential of AI to improve IVF success rates, it remains crucial to review the performance between AI and embryologists during embryo selection. STUDY DESIGN, SIZE, DURATION The search was done across PubMed, EMBASE, Ovid Medline, and IEEE Xplore from 1 June 2005 up to and including 7 January 2022. Included articles were also restricted to those written in English. Search terms utilized across all databases for the study were: (‘Artificial intelligence’ OR ‘Machine Learning’ OR ‘Deep learning’ OR ‘Neural network’) AND (‘IVF’ OR ‘in vitro fertili*’ OR ‘assisted reproductive techn*’ OR ‘embryo’), where the character ‘*’ refers the search engine to include any auto completion of the search term. PARTICIPANTS/MATERIALS, SETTING, METHODS A literature search was conducted for literature relating to AI applications to IVF. Primary outcomes of interest were accuracy, sensitivity, and specificity of the embryo morphology grade assessments and the likelihood of clinical outcomes, such as clinical pregnancy after IVF treatments. Risk of bias was assessed using the Modified Down and Black Checklist. MAIN RESULTS AND THE ROLE OF CHANCE Twenty articles were included in this review. There was no specific embryo assessment day across the studies—Day 1 until Day 5/6 of embryo development was investigated. The types of input for training AI algorithms were images and time-lapse (10/20), clinical information (6/20), and both images and clinical information (4/20). Each AI model demonstrated promise when compared to an embryologist’s visual assessment. On average, the models predicted the likelihood of successful clinical pregnancy with greater accuracy than clinical embryologists, signifying greater reliability when compared to human prediction. The AI models performed at a median accuracy of 75.5% (range 59–94%) on predicting embryo morphology grade. The correct prediction (Ground Truth) was defined through the use of embryo images according to post embryologists’ assessment following local respective guidelines. Using blind test datasets, the embryologists’ accuracy prediction was 65.4% (range 47–75%) with the same ground truth provided by the original local respective assessment. Similarly, AI models had a median accuracy of 77.8% (range 68–90%) in predicting clinical pregnancy through the use of patient clinical treatment information compared to 64% (range 58–76%) when performed by embryologists. When both images/time-lapse and clinical information inputs were combined, the median accuracy by the AI models was higher at 81.5% (range 67–98%), while clinical embryologists had a median accuracy of 51% (range 43–59%). LIMITATIONS, REASONS FOR CAUTION The findings of this review are based on studies that have not been prospectively evaluated in a clinical setting. Additionally, a fair comparison of all the studies were deemed unfeasible owing to the heterogeneity of the studies, development of the AI models, database employed and the study design and quality. WIDER IMPLICATIONS OF THE FINDINGS AI provides considerable promise to the IVF field and embryo selection. However, there needs to be a shift in developers’ perception of the clinical outcome from successful implantation towards ongoing pregnancy or live birth. Additionally, existing models focus on locally generated databases and many lack external validation. STUDY FUNDING/COMPETING INTERESTS This study was funded by Monash Data Future Institute. All authors have no conflicts of interest to declare. REGISTRATION NUMBER CRD42021256333

Funder

Monash Data Future Institute

Publisher

Oxford University Press (OUP)

Subject

Industrial and Manufacturing Engineering,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3