Affiliation:
1. MACSI, Department of Mathematics and Statistics, University of Limerick , Limerick V94 T9PX, Ireland
2. Department of Mathematics, University of California , Los Angeles, CA 90095, USA
Abstract
Abstract
Understanding cascading processes on complex network topologies is paramount for modelling how diseases, information, fake news and other media spread. In this article, we extend the multi-type branching process method developed in Keating et al., (2022), which relies on networks having homogenous node properties, to a more general class of clustered networks. Using a model of socially inspired complex contagion we obtain results, not just for the average behaviour of the cascades but for full distributions of the cascade properties. We introduce a new method for the inversion of probability generating functions to recover their underlying probability distributions; this derivation naturally extends to higher dimensions. This inversion technique is used along with the multi-type branching process to obtain univariate and bivariate distributions of cascade properties. Finally, using clique-cover methods, we apply the methodology to synthetic and real-world networks and compare the theoretical distribution of cascade sizes with the results of extensive numerical simulations.
Publisher
Oxford University Press (OUP)
Subject
Applied Mathematics,Computational Mathematics,Control and Optimization,Management Science and Operations Research,Computer Networks and Communications
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献