Statistical structural inference from edge weights using a mixture of gamma distributions

Author:

Wang Jianjia1ORCID,Hancock Edwin R2

Affiliation:

1. School of AI and Advanced Computing, XJTLU Entrepreneur College, Xi’an Jiaotong-Liverpool University , Suzhou, 215412, China

2. Department of Computer Science, University of York , York, YO10 5GH, UK

Abstract

Abstract The inference of reliable and meaningful connectivity information from weights representing the affinity between nodes in a graph is an outstanding problem in network science. Usually, this is achieved by simply thresholding the edge weights to distinguish true links from false ones and to obtain a sparse set of connections. Tools developed in statistical mechanics have provided particularly effective ways to locate the optimal threshold so as to preserve the statistical properties of the network structure. Thermodynamic analogies together with statistical mechanical ensembles have been proven to be useful in analysing edge-weighted networks. To extend this work, in this article, we use a statistical mechanical model to describe the probability distribution for edge weights. This models the distribution of edge weights using a mixture of Gamma distributions. Using a two-component Gamma mixture model with components describing the edge and non-edge weight distributions, we use the Expectation–Maximization algorithm to estimate the corresponding Gamma distribution parameters and mixing proportions. This gives the optimal threshold to convert weighted networks to sets of binary-valued connections. Numerical analysis shows that it provides a new way to describe the edge weight probability. Furthermore, using a physical analogy in which the weights are the energies of molecules in a solid, the probability density function for nodes is identical to the degree distribution resulting from a uniform weight on edges. This provides an alternative way to study the degree distribution with the nodal probability function in unweighted networks. We observe a phase transition in the low-temperature region, corresponding to a structural transition caused by applying the threshold. Experimental results on real-world weighted and unweighted networks reveal an improved performance for inferring binary edge connections from edge weights.

Funder

Shanghai Pujiang Program

Publisher

Oxford University Press (OUP)

Subject

Applied Mathematics,Computational Mathematics,Control and Optimization,Management Science and Operations Research,Computer Networks and Communications

Reference53 articles.

1. Scale-free networks are rare;Broido;Nat. Commun,2019

2. Geometric evolution of complex networks with degree correlations;Murphy;Phys. Rev. E,2018

3. The statistical physics of real-world networks;Cimini;Nat. Rev. Phys,2019

4. Dense networks with mixture degree distribution;Wang;Front. Phys,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3