Exposure theory for learning complex networks with random walks

Author:

Klishin Andrei A1,Bassett Dani S2

Affiliation:

1. Department of Bioengineering, University of Pennsylvania , 210 S. 33rd Street, 240 Skirkanich Hall, Philadelphia, PA 19104-6321, USA

2. Department of Bioengineering, Department of Physics & Astronomy , Department of Electrical & Systems Engineering, Department of Neurology and Department of Psychiatry, University of Pennsylvania, 210 S. 33rd Street, 240 Skirkanich Hall, Philadelphia, PA 19104-6321, USA and Santa Fe Institute, Santa Fe, NM 87501, USA

Abstract

Abstract Random walks are a common model for the exploration and discovery of complex networks. While numerous algorithms have been proposed to map out an unknown network, a complementary question arises: in a known network, which nodes and edges are most likely to be discovered by a random walker in finite time? Here, we introduce exposure theory, a statistical mechanics framework that predicts the learning of nodes and edges across several types of networks, including weighted and temporal, and show that edge learning follows a universal trajectory. While the learning of individual nodes and edges is noisy, exposure theory produces a highly accurate prediction of aggregate exploration statistics.

Funder

Army Research Office

National Institutes of Mental Health

Publisher

Oxford University Press (OUP)

Subject

Applied Mathematics,Computational Mathematics,Control and Optimization,Management Science and Operations Research,Computer Networks and Communications

Reference66 articles.

1. Random walks and diffusion on networks;Masuda,;Phys. Rep.,2017

2. Some problems on random walk in space;Dvoretzky,,1951

3. Über eine aufgabe der wahrscheinlichkeitsrechnung betreffend die irrfahrt im straßennetz;Pólya,;Math. Ann.,1921

4. Learning about knowledge: a complex network approach;da Fontoura Costa,;Phys. Rev. E,2006

5. Exploring complex networks through random walks;da Fontoura Costa,;Phys. Rev. E,2007

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Human learning of hierarchical graphs;Physical Review E;2024-04-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3