Graph model selection by edge probability prequential inference

Author:

Duvivier Louis1,Cazabet Rémy2,Robardet Céline1

Affiliation:

1. Univ Lyon, INSA Lyon département informatique , CNRS, LIRIS UMR5205, Campus de la Doua, Bâtiment Blaise Pascal, 20 avenue Albert Einstein, 69621 VILLEURBANNE CEDEX, F-69621, France

2. Univ Lyon, Université Lyon 1 département informatique , CNRS, LIRIS UMR5205, Campus de la Doua, Bâtiment Blaise Pascal, 20 Avenue Albert Einstein, 69621 VILLEURBANNE CEDEX, F-69622, France

Abstract

AbstractGraphs are widely used for describing systems made of many interacting components and for understanding the structure of their interactions. Various statistical models exist, which describe this structure as the result of a combination of constraints and randomness. In this article, we introduce edge probability prequential inference, a new approach to perform model selection, which relies on probability distributions on edge ensembles. From a theoretical point of view, we show that this methodology provides a more consistent ground for statistical inference with respect to existing techniques, due to the fact that it relies on multiple realizations of the random variable. It also provides better guarantees against overfitting, by making it possible to lower the number of parameters of the model below the number of observations. Experimentally, we illustrate the benefits of this methodology in two situations: to infer the partition of a stochastic blockmodel and to identify the most relevant model for a given graph between the stochastic blockmodel and the configuration model.

Funder

BITUNAM

Publisher

Oxford University Press (OUP)

Subject

Applied Mathematics,Computational Mathematics,Control and Optimization,Management Science and Operations Research,Computer Networks and Communications

Reference44 articles.

1. Subnetwork hierarchies of biochemical pathways;Holme,;Bioinformatics,2003

2. Coauthorship networks and patterns of scientific collaboration;Newman,;Proc. Natl. Acad. Sci. USA,2004

3. Complex network measures of brain connectivity: uses and interpretations;Rubinov,;Neuroimage,2010

4. Characterization of complex networks: a survey of measurements;da,;Adv. Phys.,2007

5. On the evolution of random graphs;Erdös,;Publ. Math. Inst. Hung. Acad. Sci.,1960

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3