Branching process descriptions of information cascades on Twitter

Author:

Gleeson James P1,Onaga Tomokatsu2,Fennell Peter3,Cotter James4,Burke Raymond4,O’Sullivan David J P4

Affiliation:

1. MACSI, Department of Mathematics and Statistics, University of Limerick, Limerick, Ireland; Insight Centre for Data Analytics, University of Limerick, Limerick, Ireland and Confirm Centre for Smart Manufacturing, University of Limerick, Limerick, Ireland

2. The Frontier Research Institute for Interdisciplinary Sciences & Graduate School of Information Sciences, Tohoku University, Sendai, Miyagi, Japan

3. MACSI, Department of Mathematics and Statistics, University of Limerick, Limerick, Ireland and USC/ISI, 4676 Admiralty Way, Marina Del Rey, Los Angeles, CA 90292, USA

4. MACSI, Department of Mathematics and Statistics, University of Limerick, Limerick, Ireland

Abstract

Abstract A detailed analysis of Twitter-based information cascades is performed, and it is demonstrated that branching process hypotheses are approximately satisfied. Using a branching process framework, models of agent-to-agent transmission are compared to conclude that a limited attention model better reproduces the relevant characteristics of the data than the more common independent cascade model. Existing and new analytical results for branching processes are shown to match well to the important statistical characteristics of the empirical information cascades, thus demonstrating the power of branching process descriptions for understanding social information spreading.

Funder

Science Foundation Ireland

European Regional Development Fund

James S. McDonnell Foundation

JSPS KAKENHI

Publisher

Oxford University Press (OUP)

Subject

Applied Mathematics,Computational Mathematics,Control and Optimization,Management Science and Operations Research,Computer Networks and Communications

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Stochastics Branching Process Model for Analyzing Rumor Spreading in Social Media Networks;2024 IEEE Gaming, Entertainment, and Media Conference (GEM);2024-06-05

2. The impact of effective participation in stopping misinformation: an approach based on branching processes;J STAT MECH-THEORY E;2024

3. Stochastic evolution of bad memes;Physical Review E;2023-12-04

4. Branching processes reveal influential nodes in social networks;Information Sciences;2023-10

5. Designing Policies for Truth: Combating Misinformation with Transparency and Information Design;2023 21st International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOpt);2023-08-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3