Betweenness centrality profiles in trees

Author:

Fish Benjamin1,Kushwaha Rahul2,Turán György34

Affiliation:

1. Department of Mathematics, Statistics, and Computer Science, University of Illinois at Chicago, 851 S. Morgan St., Chicago, IL 60607, USA

2. Department of Computer Science, University of Illinois at Chicago, 851 S. Morgan St., Chicago, IL 60607, USA

3. Department of Mathematics, Statistics, and Computer Science, University of Illinois at Chicago, Chicago, IL 60607, USA and

4. MTA-SZTE Research Group on Artificial Intelligence, Szeged, Hungary

Abstract

Abstract Betweenness centrality of a vertex in a graph measures the fraction of shortest paths going through the vertex. This is a basic notion for determining the importance of a vertex in a network. The $k$-betweenness centrality of a vertex is defined similarly, but only considers shortest paths of length at most $k$. The sequence of $k$-betweenness centralities for all possible values of $k$ forms the betweenness centrality profile of a vertex. We study properties of betweenness centrality profiles in trees. We show that for scale-free random trees, for fixed $k$, the expectation of $k$-betweenness centrality strictly decreases as the index of the vertex increases. We also analyse worst-case properties of profiles in terms of the distance of profiles from being monotone, and the number of times pairs of profiles can cross. This is related to whether $k$-betweenness centrality, for small values of $k$, may be used instead of having to consider all shortest paths. Bounds are given that are optimal in order of magnitude. We also present some experimental results for scale-free random trees.

Publisher

Oxford University Press (OUP)

Subject

Applied Mathematics,Computational Mathematics,Control and Optimization,Management Science and Operations Research,Computer Networks and Communications

Reference23 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3