Network entropy using edge-based information functionals

Author:

Aziz Furqan1,Hancock Edwin R2,Wilson Richard C2

Affiliation:

1. Centre for Computational Biology, University of Birmingham, Birmingham B15 2TT, UK

2. Department of Computer Science, University of York, York YO10 5GH, UK

Abstract

Abstract In this article, we present a novel approach to analyse the structure of complex networks represented by a quantum graph. A quantum graph is a metric graph with a differential operator (including the edge-based Laplacian) acting on functions defined on the edges of the graph. Every edge of the graph has a length interval assigned to it. The structural information contents are measured using graph entropy which has been proved useful to analyse and compare the structure of complex networks. Our definition of graph entropy is based on local edge functionals. These edge functionals are obtained by a diffusion process defined using the edge-based Laplacian of the graph using the quantum graph representation. We first present the general framework to define graph entropy using heat diffusion process and discuss some of its properties for different types of network models. Second, we propose a novel signature to gauge the structural complexity of the network and apply the proposed method to different datasets.

Publisher

Oxford University Press (OUP)

Subject

Applied Mathematics,Computational Mathematics,Control and Optimization,Management Science and Operations Research,Computer Networks and Communications

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Complex dynamics of COVID-19 mathematical model on Erdős–Rényi network;International Journal of Biomathematics;2022-10-17

2. Szeged-like entropies of graphs;Applied Mathematics and Computation;2022-10

3. Influence of pedestrian psychology on evacuation dynamics with the guide of emergency signage;Europhysics Letters;2022-02-01

4. Numerical Analysis of a Novel 3D Chaotic System with Period-Subtracting Structures;International Journal of Bifurcation and Chaos;2021-09-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3