Scaling laws for properties of random graphs that grow via successive combination

Author:

Grindrod Peter1ORCID

Affiliation:

1. Mathematical Institute, University of Oxford , Oxford OX2 6GG, UK

Abstract

Abstract We consider undirected graphs that grow through the successive combination of component sub-graphs. For any well-behaved functions defined for such graphs, taking values in a Banach space, we show that there must exist a scaling law applicable when successive copies of the same component graph are combined. Crucially, we extend the approach introduced in previous work to the successive combination of component random sub-graphs. We illustrate this by generalizing the preferential attachment operation for the combination of stochastic block models. We discuss a further wide range of random graph combination operators to which this theory now applies, indicating the ubiquity of growth scaling laws (and asymptotic decay scaling laws) within applications, where the modules are quite distinct, yet may be considered as instances drawn from the same random graph. This is a type of statistically self-similar growth process, as opposed to a deterministic growth process incorporating exact copies of the same motif, and it represents a natural, partially random, growth processes for graphs observed in the analysis of social and technology contexts.

Publisher

Oxford University Press (OUP)

Subject

Applied Mathematics,Computational Mathematics,Control and Optimization,Management Science and Operations Research,Computer Networks and Communications

Reference20 articles.

1. Networks

2. Fast unfolding of communities in large networks;Blondel,;J. Stat. Mech. Theory Exp.,2008

3. Growth, innovation, scaling, and the pace of life in cities;Bettencourt,;Proc. Natl. Acad. Sci. USA,2007

4. An overview of city analytics;Higham,;R. Soc. Open Sci.,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3