Abstract
Abstract
We study graphs that are formed by independently positioned needles (i.e. line segments) in the unit square. To mathematically characterize the graph structure, we derive the probability that two line segments intersect and determine related quantities such as the distribution of intersections, given a certain number of line segments $N$. We interpret intersections between line segments as nodes and connections between them as edges in a spatial network that we refer to as random-line graph (RLG). Using methods from the study of random-geometric graphs, we show that the probability of RLGs to be connected undergoes a sharp transition if the number of lines exceeds a threshold $N^*$.
Publisher
Oxford University Press (OUP)
Subject
Applied Mathematics,Computational Mathematics,Control and Optimization,Management Science and Operations Research,Computer Networks and Communications
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献