BFS-based distributed algorithm for parallel local-directed subgraph enumeration

Author:

Levinas Itay1,Scherz Roy1,Louzoun Yoram1

Affiliation:

1. Department of Mathematics, Bar-Ilan University , Ramat Gan, 5290000, Israel

Abstract

Abstract Estimating the frequency of subgraphs is of importance for many tasks, including subgraph isomorphism, kernel-based anomaly detection and network structure analysis. While multiple algorithms were proposed for full enumeration or sampling-based estimates, these methods fail in very large graphs. Recent advances in parallelization allow for estimates of total subgraph counts in very large graphs. The task of counting the frequency of each subgraph associated with each vertex also received excellent solutions for undirected graphs. However, there is currently no good solution for very large directed graphs. We here propose VDMC (Vertex specific Distributed Motif Counting)—a fully distributed algorithm to optimally count all the three and four vertices connected directed graphs (network motifs) associated with each vertex of a graph. VDMC counts each motif only once and its efficiency is linear in the number of counted motifs. It is fully parallelized to be efficient in GPU-based computation. VDMC is based on three main elements: (1) Ordering the vertices and only counting motifs containing increasing order vertices; (2) sub-ordering motifs based on the average depth of the tree spanning them via a BFS traversal; and (3) removing isomorphisms only once for the entire graph. We here compare VDMC to analytical estimates of the expected number of motifs in Erdős–Rényi graphs and show its accuracy. VDMC is available as a highly efficient CPU and GPU code with a novel data structure for efficient graph manipulation. We show the efficacy of VDMC on real-world graphs. VDMC allows for the precise analysis of subgraph frequency around each vertex in large graphs and opens the way for the extension of methods until now limited to graphs of thousands of edges to graphs with millions of edges and above. GIT: https://github.com/louzounlab/graph-measures/ PyPI: https://pypi.org/project/graph-measures/

Publisher

Oxford University Press (OUP)

Subject

Applied Mathematics,Computational Mathematics,Control and Optimization,Management Science and Operations Research,Computer Networks and Communications

Reference52 articles.

1. Identification of large disjoint motifs in biological networks;Elhesha,;BMC Bioinformatics,2016

2. An algorithm for subgraph isomorphism;Ullmann,;J. ACM,,1976

3. GAIA: graph classification using evolutionary computation;Jin,;Proceedings of the 2010 ACM SIGMOD International Conference on Management of Data,2010

4. Web graph similarity for anomaly detection;Papadimitriou,;J. Internet Serv. Appl.,,2010

5. Algorithm 457: finding all cliques of an undirected graph;Bron,;Commun. ACM,1973

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3