A persistent homological analysis of network data flow malfunctions

Author:

Scoville Nicholas A1,Yegnesh Karthik2

Affiliation:

1. Department of Mathematics and Computer Science, Ursinus College, 601 E. Main Street, Collegeville, PA 19426, USA

2. Methacton High School, 1005 Kriebel Mill Rd, Eagleville, PA 19403, USA

Abstract

Abstract Persistent homology has recently emerged as a powerful technique in topological data analysis for analysing the emergence and disappearance of topological features throughout a filtered space, shown via persistence diagrams. In this article, we develop an application of ideas from the theory of persistent homology and persistence diagrams to the study of data flow malfunctions in networks with a certain hierarchical structure. In particular, we formulate an algorithmic construction of persistence diagrams that parameterize network data flow errors, thus enabling novel applications of statistical methods that are traditionally used to assess the stability of persistence diagrams corresponding to homological data to the study of data flow malfunctions. We conclude with an application to network packet delivery systems.

Publisher

Oxford University Press (OUP)

Subject

Applied Mathematics,Computational Mathematics,Control and Optimization,Management Science and Operations Research,Computer Networks and Communications

Reference8 articles.

1. Homological reconstruction and simplification in $\Bbb{R}^3$;Attali;Comput. Geom.,2015

2. Statistical topological data analysis using persistence landscapes.;Bubenik;J. Mach. Learn. Res.

3. Graph induced complex on point data.;Dey;Comput. Geom.,2015

4. Persistence Theory: From Quiver Representations to Data Analysis

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Merge trees in discrete Morse theory;Research in the Mathematical Sciences;2022-07-22

2. The Realization Problem for Discrete Morse Functions on Trees;Algebra Colloquium;2020-08-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3