Affiliation:
1. RAND Corporation, 1776 Main St, Santa Monica, CA 90401, USA
Abstract
Abstract
We use mobile device data to construct empirical interpersonal physical contact networks in the city of Portland, Oregon, both before and after social distancing measures were enacted during the COVID-19 pandemic. These networks reveal how social distancing measures and the public’s reaction to the incipient pandemic affected the connectivity patterns within the city. We find that as the pandemic developed there was a substantial decrease in the number of individuals with many contacts. We further study the impact of these different network topologies on the spread of COVID-19 by simulating an SEIR epidemic model over these networks and find that the reduced connectivity greatly suppressed the epidemic. We then investigate how the epidemic responds when part of the population is vaccinated, and we compare two vaccination distribution strategies, both with and without social distancing. Our main result is that the heavy-tailed degree distribution of the contact networks causes a targeted vaccination strategy that prioritizes high-contact individuals to reduce the number of cases far more effectively than a strategy that vaccinates individuals at random. Combining both targeted vaccination and social distancing leads to the greatest reduction in cases, and we also find that the marginal benefit of a targeted strategy as compared to a random strategy exceeds the marginal benefit of social distancing for reducing the number of cases. These results have important implications for ongoing vaccine distribution efforts worldwide.
Publisher
Oxford University Press (OUP)
Subject
Applied Mathematics,Computational Mathematics,Control and Optimization,Management Science and Operations Research,Computer Networks and Communications
Reference41 articles.
1. Socio-demographic and health factors drive the epidemic progression and should guide vaccination strategies for best COVID-19 containment;Markovič,;Results Phys.,2021
2. The use of mobile phone data to inform analysis of COVID-19 pandemic epidemiology;Grantz,;Nat. Commun.,2020
3. Mobile phone data for informing public health actions across the COVID-19 pandemic life cycle;Oliver,,2020
4. Country-wide mobility changes observed using mobile phone data during COVID-19 pandemic;Heiler,,2020
5. COVID-19 lockdown induces structural changes in mobility networks – implication for mitigating disease dynamics;Schlosser,,2020
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献