Cross-diffusion induced instability on networks

Author:

Kuehn Christian123,Soresina Cinzia45ORCID

Affiliation:

1. Department of Mathematics, Technical University of Munich , Boltzmannstr. 3 , 85748 Garching bei München, Germany

2. Munich Data Science Institute, Technical University of Munich , Walther-von-Dyck-Straße 10 , 85748 Garching bei München, Germany

3. Complexity Science Hub Vienna , Josefstädter Str. 39 , 1080 Wien, Austria

4. Department of Mathematics and Scientific Computing, University of Graz , Heinrichstr. 36 , 8010 Graz, Austria

5. Department of Mathematics, University of Trento , via Sommarive 14 , 38123 Trento, Italy

Abstract

Abstract The concept of Turing instability, namely that diffusion can destabilize the homogenous steady state, is well known either in the context of partial differential equations (PDEs) or in networks of dynamical systems. Recently, reaction–diffusion equations with non-linear cross-diffusion terms have been investigated, showing an analogous effect called cross-diffusion induced instability. In this article, we consider non-linear cross-diffusion effects on networks of dynamical systems, showing that also in this framework the spectrum of the graph Laplacian determines the instability appearance, as well as the spectrum of the Laplace operator in reaction–diffusion equations. We extend to network dynamics a particular network model for competing species, coming from the PDEs context, for which the non-linear cross-diffusion terms have been justified, e.g. via a fast-reaction limit. In particular, the influence of different topology structures on the cross-diffusion induced instability is highlighted, considering regular rings and lattices, and also small-world, Erdős–Réyni, and Barabási–Albert networks.

Funder

VolkswagenStiftung

European Union’s Horizon 2020

Publisher

Oxford University Press (OUP)

Reference59 articles.

1. The chemical basis of morphogenesis;Turing;Philos. Trans. R. Soc. B,1952

2. Instability and dynamic pattern in cellular networks;Othmer;J. Theor. Biol,1971

3. The theory of pattern formation on directed networks;Asllani;Nat. Commun,2014

4. Turing patterns in network-organized activator–inhibitor systems;Nakao;Nat. Phys,2010

5. Turing patterns in multiplex networks;Asllani;Phys. Rev. E,2014

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3