PDE limits of stochastic SIS epidemics on networks

Author:

Di Lauro F1,Croix J-C1,Berthouze L2,Kiss I Z1

Affiliation:

1. Department of Mathematics, School of Mathematical and Physical Sciences, University of Sussex, Falmer, Brighton BN1 9QH, UK

2. Department of Informatics, University of Sussex, Falmer BN1 9QH, UK

Abstract

Abstract Stochastic epidemic models on networks are inherently high-dimensional and the resulting exact models are intractable numerically even for modest network sizes. Mean-field models provide an alternative but can only capture average quantities, thus offering little or no information about variability in the outcome of the exact process. In this article, we conjecture and numerically demonstrate that it is possible to construct partial differential equation (PDE)-limits of the exact stochastic susceptible-infected-susceptible epidemics on Regular, Erdős–Rényi, Barabási–Albert networks and lattices. To do this, we first approximate the exact stochastic process at population level by a Birth-and-Death process (BD) (with a state space of $O(N)$ rather than $O(2^N)$) whose coefficients are determined numerically from Gillespie simulations of the exact epidemic on explicit networks. We numerically demonstrate that the coefficients of the resulting BD process are density-dependent, a crucial condition for the existence of a PDE limit. Extensive numerical tests for Regular, Erdős–Rényi, Barabási–Albert networks and lattices show excellent agreement between the outcome of simulations and the numerical solution of the Fokker–Planck equations. Apart from a significant reduction in dimensionality, the PDE also provides the means to derive the epidemic outbreak threshold linking network and disease dynamics parameters, albeit in an implicit way. Perhaps more importantly, it enables the formulation and numerical evaluation of likelihoods for epidemic and network inference as illustrated in a fully worked out example.

Funder

Leverhulme Trust for the Research

Publisher

Oxford University Press (OUP)

Subject

Applied Mathematics,Computational Mathematics,Control and Optimization,Management Science and Operations Research,Computer Networks and Communications

Reference38 articles.

1. Mathematical Models in Population Biology and Epidemiology

2. Mathematics of Epidemics on Networks

3. Epidemic processes in complex networks;Pastor-Satorras,;Rev. Mod. Phys.,2015

4. Dynamical systems on networks;Porter,;Frontiers in Applied Dynamical Systems: Reviews and Tutorials,2016

5. The effects of local spatial structure on epidemiological invasions;Keeling,;Proc. Biol. Sci.,1999

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3