Evaluating AI Models: Performance Validation Using Formal Multiple-Choice Questions in Neuropsychology

Author:

García-Rudolph Alejandro1234ORCID,Sanchez-Pinsach David1234,Opisso Eloy1234

Affiliation:

1. Departmento de Investigación e Innovación , , Barcelona, Spain

2. Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la UAB, Badalona , , Barcelona, Spain

3. Universitat Autònoma de Barcelona , Bellaterra (Cerdanyola del Vallès), Spain

4. Fundació Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol , Badalona, Barcelona, Spain

Abstract

Abstract High-quality and accessible education is crucial for advancing neuropsychology. A recent study identified key barriers to board certification in clinical neuropsychology, such as time constraints and insufficient specialized knowledge. To address these challenges, this study explored the capabilities of advanced Artificial Intelligence (AI) language models, GPT-3.5 (free-version) and GPT-4.0 (under-subscription version), by evaluating their performance on 300 American Board of Professional Psychology in Clinical Neuropsychology-like questions. The results indicate that GPT-4.0 achieved a higher accuracy rate of 80.0% compared to GPT-3.5’s 65.7%. In the “Assessment” category, GPT-4.0 demonstrated a notable improvement with an accuracy rate of 73.4% compared to GPT-3.5’s 58.6% (p = 0.012). The “Assessment” category, which comprised 128 questions and exhibited the highest error rate by both AI models, was analyzed. A thematic analysis of the 26 incorrectly answered questions revealed 8 main themes and 17 specific codes, highlighting significant gaps in areas such as “Neurodegenerative Diseases” and “Neuropsychological Testing and Interpretation.”

Publisher

Oxford University Press (OUP)

Reference18 articles.

1. Artificial hallucinations in ChatGPT: Implications in scientific writing;Alkaissi;Cureus,2023

2. ChatGPT's dance with neuropsychological data: A case study in Alzheimer's disease;El Haj;Ageing Research Reviews,2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3