Reactive oxygen species play a dominant role in all pathways of rapid quinolone-mediated killing

Author:

Hong Yuzhi1,Li Qiming12,Gao Qiong13,Xie Jianping2,Huang Haihui3,Drlica Karl1,Zhao Xilin14

Affiliation:

1. Public Health Research Institute and Department of Microbiology, Biochemistry & Molecular Genetics, New Jersey Medical School, Rutgers University, 225 Warren Street, Newark, NJ 07103, USA

2. Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Ministry of Education Eco-Environment of the Three Gorges Reservoir Region, School of Life Sciences, Southwest University, 1 Tiansheng Road, Beibei District, Chongqing 400715, China

3. Institute of Antibiotics, Huashan Hospital, Fudan University, 12 Middle Wulumuqi Road, Shanghai 200040, China

4. State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, 4221-117 South Xiang-An Road, Xiang-An District, Xiamen, Fujian Province 361102, China

Abstract

Abstract Background Quinolones have been thought to rapidly kill bacteria in two ways: (i) quinolone-topoisomerase-DNA lesions stimulate the accumulation of toxic reactive oxygen species (ROS); and (ii) the lesions directly cause lethal DNA breaks. Traditional killing assays may have underestimated the ROS contribution by overlooking the possibility that ROS continue to accumulate and kill cells on drug-free agar after quinolone removal. Methods Quinolone-induced, ROS-mediated killing of Escherichia coli was measured by plating post-treatment samples on agar with/without anti-ROS agents. Results When E. coli cultures were treated with ciprofloxacin or moxifloxacin in the presence of chloramphenicol (to accentuate DNA-break-mediated killing), lethal activity, revealed by plating on quinolone-free agar, was inhibited by supplementing agar with ROS-mitigating agents. Moreover, norfloxacin-mediated lethality, observed with cells suspended in saline, was blocked by inhibitors of ROS accumulation and exacerbated by a katG catalase deficiency that impairs peroxide detoxification. Unlike WT cells, the katG mutant was killed by nalidixic acid or norfloxacin with chloramphenicol present and by nalidixic or oxolinic acid with cells suspended in saline. ROS accumulated after quinolone removal with cultures either co-treated with chloramphenicol or suspended in saline. Deficiencies in recA or recB reduced the protective effects of ROS-mitigating agents, supporting the idea that repair of quinolone-mediated DNA lesions suppresses the direct lethal effects of such lesions. Conclusions ROS are the dominant factor in all modes of quinolone-mediated lethality, as quinolone-mediated primary DNA lesions are insufficient to kill without triggering ROS accumulation. ROS-stimulating adjuvants may enhance the lethality of quinolones and perhaps other antimicrobials.

Funder

National Natural Science Foundation of China

Public Health Research Institute

China Scholarship Council

Publisher

Oxford University Press (OUP)

Subject

Infectious Diseases,Pharmacology (medical),Pharmacology,Microbiology (medical)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3