Affiliation:
1. State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu , China
2. Department of Endodontics, West China Hospital of Stomatology, Sichuan University , Chengdu 610041, China
Abstract
Abstract
Mechanical stiffness is recognized as a key physical factor and directs cell function via a mechanotransduction process, from extracellular physical cues to intracellular signaling cascades that affect transcriptional activity. Cells continually receive mechanical signals from both the surrounding matrix and adjacent cells. However, how mechanical stiffness cue at cell–substrate interfaces coordinates cell–cell junctions in guiding mesenchymal stem cell behaviors is poorly understood. Here, polydimethylsiloxane substrates with different stiffnesses were used to study mechanosensation/transduction mechanisms in controlling odontogenic differentiation of dental papilla cells (DPCs). DPC phenotypes (morphology and differentiation) changed in response to the applied force derived from stiff substrates. Significantly, higher expression of paxillin on stiffer substrates promoted DPC dentinogenesis. Upon treatment with siRNA to knockdown paxillin, N-cadherin increased mainly in the cytomembrane at the area of cell–cell contacts, whereas β-catenin decreased in the nuclei. The result of a double luciferase reporter assay showed that stiffness promoted β-catenin binding to TCF, which could coactivate the target genes associated with odontogenic differentiation, as evidenced by bioinformatics analysis. Finally, we determined that the addition of a β-catenin inhibitor suppressed DPC mineralization in all the stiffness groups. Thus, our results indicated that a mechanotransduction process from cell–substrate interactions to cell–cell adhesions was required for DPC odontogenic differentiation under the stimulation of substrate stiffness. This finding suggests that stem cell fate specification under the stimulus of stiffness at the substrates is based on crosstalk between substrate interactions and adherens junctions, which provides an essential mechanism for cell-based tissue engineering.
Funder
National Natural Science Foundation of China
West China School/Hospital of Stomatology, Sichuan University
China Postdoctoral Science Foundation
Science and Technology Project of Sichuan Province
Publisher
Oxford University Press (OUP)
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献