Biosensors for the Analysis of Food- and Waterborne Pathogens and Their Toxins

Author:

Rasooly Avraham1,Herold Keith E2

Affiliation:

1. National Institutes of Health, National Cancer Institute, Cancer Diagnosis Program, 6130 Executive Blvd, Rockville, MD 20852; and U.S. Food and Drug Administration, Center for Devices and Radiological Health, Office of Science and Engineering Laboratories, Division of Biological Sciences, FDA Campus at White Oak, Life Sciences Bldg, 10903 New Hampshire Ave, Silver Spring, MD 20903

2. University of Maryland, Department of Mechanical Engineering, College Park, MD 20742

Abstract

Abstract Biosensors are devices which combine a biochemical recognition element with a physical transducer. There are various types of biosensors, including electrochemical, acoustical, and optical sensors. Biosensors are used for medical applications and for environmental testing. Although biosensors are not commonly used for food microbial analysis, they have great potential for the detection of microbial pathogens and their toxins in food. They enable fast or real-time detection, portability, and multipathogen detection for both field and laboratory analysis. Several applications have been developed for microbial analysis of food pathogens, including E. coli O157:H7, Staphylococcus aureus, Salmonella, and Listeria monocytogenes, as well as various microbial toxins such as staphylococcal enterotoxins and mycotoxins. Biosensors have several potential advantages over other methods of analysis, including sensitivity in the range of ng/mL for microbial toxins and <100 colony-forming units/mL for bacteria. Fast or real-time detection can provide almost immediate interactive information about the sample tested, enabling users to take corrective measures before consumption or further contamination can occur. Miniaturization of biosensors enables biosensor integration into various food production equipment and machinery. Potential uses of biosensors for food microbiology include online process microbial monitoring to provide real-time information in food production and analysis ofmicrobial pathogens and their toxins in finished food. Biosensors can also be integrated into Hazard Analysis and Critical Control Point programs, enabling critical microbial analysis of the entire food manufacturing process. In this review, the main biosensor approaches, technologies, instrumentation, and applications for food microbial analysis are described.

Publisher

Oxford University Press (OUP)

Subject

Pharmacology,Agronomy and Crop Science,Environmental Chemistry,Food Science,Analytical Chemistry

Cited by 98 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3