Evolution and Ecology of Silent Flight in Owls and Other Flying Vertebrates

Author:

Clark Christopher J1, LePiane Krista1,Liu Lori1

Affiliation:

1. Department of Evolution, Ecology, and Organismal Biology, University of California—Riverside, 900 University Avenue, Riverside, CA 92521, USA

Abstract

Synopsis We raise and explore possible answers to three questions about the evolution and ecology of silent flight of owls: (1) do owls fly silently for stealth, or is it to reduce self-masking? Current evidence slightly favors the self-masking hypothesis, but this question remains unsettled. (2) Two of the derived wing features that apparently evolved to suppress flight sound are the vane fringes and dorsal velvet of owl wing feathers. Do these two features suppress aerodynamic noise (sounds generated by airflow), or do they instead reduce structural noise, such as frictional sounds of feathers rubbing during flight? The aerodynamic noise hypothesis lacks empirical support. Several lines of evidence instead support the hypothesis that the velvet and fringe reduce frictional sound, including: the anatomical location of the fringe and velvet, which is best developed in wing and tail regions prone to rubbing, rather than in areas exposed to airflow; the acoustic signature of rubbing, which is broadband and includes ultrasound, is present in the flight of other birds but not owls; and the apparent relationship between the velvet and friction barbules found on the remiges of other birds. (3) Have other animals also evolved silent flight? Wing features in nightbirds (nocturnal members of Caprimulgiformes) suggest that they may have independently evolved to fly in relative silence, as have more than one diurnal hawk (Accipitriformes). We hypothesize that bird flight is noisy because wing feathers are intrinsically predisposed to rub and make frictional noise. This hypothesis suggests a new perspective: rather than regarding owls as silent, perhaps it is bird flight that is loud. This implies that bats may be an overlooked model for silent flight. Owl flight may not be the best (and certainly, not the only) model for “bio-inspiration” of silent flight.

Funder

National Science Foundation Graduate Research Fellowship

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Animal Science and Zoology,Ecology, Evolution, Behavior and Systematics

Reference147 articles.

1. Acoustics of friction;Akay;J Acoust Soc Am,2002

2. A review of bird deaths on barbed-wire fences;Allen;Wilson Bull,1990

3. Obituary;Commander R. R. Graham, D.S.O, R. N. British Birds,1940

4. Morphometric characterisation of wing feathers of the barn owl Tyto alba pratincola and the pigeon Columba livia;Bachmann;Front Zool,2007

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3