A Horse of a Different Color?: Tensile Strength and Elasticity of Sloth Flexor Tendons

Author:

Mossor A M1,Austin B L1,Avey-Arroyo J A2,Butcher M T1

Affiliation:

1. Department of Biological Sciences, Youngstown State University, Youngstown, OH USA

2. The Sloth Sanctuary of Costa Rica, Limon, Costa Rica

Abstract

Abstract Tendons must be able to withstand the tensile forces generated by muscles to provide support while avoiding failure. The properties of tendons in mammal limbs must therefore be appropriate to accommodate a range of locomotor habits and posture. Tendon collagen composition provides resistance to loading that contributes to tissue strength which could, however, be modified to not exclusively confer large strength and stiffness for elastic energy storage/recovery. For example, sloths are nearly obligate suspenders and cannot run, and due to their combined low metabolic rate, body temperature, and rate of digestion, they have an extreme need to conserve energy. It is possible that sloths have a tendon “suspensory apparatus” functionally analogous to that in upright ungulates, thus allowing for largely passive support of their body weight below-branch, while concurrently minimizing muscle contractile energy expenditure. The digital flexor tendons from the fore- and hindlimbs of two-toed (Choloepus hoffmanni) and three-toed (Bradypus variegatus) sloths were loaded in tension until failure to test this hypothesis. Overall, tensile strength and elastic (Young’s) modulus of sloth tendons were low, and these material properties were remarkably similar to those of equine suspensory “ligaments.” The results also help explain previous findings in sloths showing relatively low levels of muscle activation in the digital flexors during postural suspension and suspensory walking.

Funder

Department of Neurobiology and Anatomy at NEOMED

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Animal Science and Zoology,Ecology, Evolution, Behavior and Systematics

Reference63 articles.

1. Elastic energy stores in running vertebrates;Alexander;Am Zool,1984

2. Factors of safety in the structure of animals;Alexander;Sci Prog,1981

3. Elastic properties of the forefoot of the Donkey, Equus asinus;Alexander;J Zool,1985

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3