Tiger Salamanders (Ambystoma tigrinum) Increase Foot Contact Surface Area on Challenging Substrates During Terrestrial Locomotion

Author:

Vega Christine M1ORCID,Ashley-Ross Miriam A1

Affiliation:

1. Department of Biology, Wake Forest University, 1834 Wake Forest Road, Winston-Salem, NC 27109, USA

Abstract

Synopsis Animals live in heterogeneous environments must navigate in order to forage or capture food, defend territories, and locate mates. These heterogeneous environments have a variety of substrates that differ in their roughness, texture, and other properties, all of which may alter locomotor performance. Despite such natural variation in substrate, many studies on locomotion use noncompliant surfaces that either are unrepresentative of the range of substrates experienced by species or underestimate maximal locomotor capabilities. The goal of this study was to determine the role of forefeet and hindfeet on substrates with different properties during walking in a generalized sprawling tetrapod, the tiger salamander (Ambystoma tigrinum). Adult salamanders (n = 4, SVL = 11.2–14.6 cm) walked across level dry sand (DS), semi-soft plaster of Paris (PoP), wet sand (WS), and a hard, noncompliant surface (table)—substrates that vary in compliance. Trials were filmed in dorsal and anterior views. Videos were analyzed to determine the number of digits and surface area of each foot in contact with the substrate. The surface area of the forelimbs contacting the substrate was significantly greater on DS and PoP than on WS and the table. The surface area of the hindlimbs contacting the substrate was significantly greater on DS than on all other substrates. There were no significant differences in the time that the fore- or hindfeet were in contact with the substrate as determined by the number of digits. We conclude that salamanders modulate the use of their feet depending on the substrate, particularly on DS which is known to increase the mechanical work and energy expended during locomotion owing to the fluid nature of its loose particles. More studies are needed to test a wider range of substrates and to incorporate behavioral data from field studies to get a better understanding of how salamanders are affected by different substrates in their natural environment.

Funder

Department of Biology at Wake Forest University

Publisher

Oxford University Press (OUP)

Reference47 articles.

1. Principles of Animal Locomotion

2. Morphology, performance and fitness;Arnold;Am Zool,1983

3. Branching out in locomotion: the mechanics of perch use in birds and primates;Bonser;J Exp Biol,1999

4. Sprint performance of a generalist lizard running on different substrates: grip matters;Brandt;J Zool,2015

5. Substrate diameter and compliance affect the gripping strategies and locomotor mode of climbing boa constrictors;Byrnes;J Exp Biol,2010

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3