A Quantitative Analysis of Micrurus Coral Snakes Reveals Unexpected Variation in Stereotyped Anti-Predator Displays Within a Mimicry System

Author:

Moore T Y123ORCID,Danforth S M4ORCID,Larson J G23,Davis Rabosky A R23ORCID

Affiliation:

1. Robotics Institute, University of Michigan, 2350 Hayward St, Ann Arbor, MI 48109, USA

2. Ecology and Evolutionary Biology, University of Michigan, 1105 N. University Ave, Ann Arbor, MI 48109, USA

3. Museum of Zoology, University of Michigan, 3600 Varsity Drive, Ann Arbor, MI 48108, USA

4. Mechanical Engineering, University of Michigan, 2350 Hayward St, Ann Arbor, MI 48109, USA

Abstract

Synopsis Warning signals in chemically defended organisms are critical components of predator–prey interactions, often requiring multiple coordinated display components for effective communication. When threatened by a predator, venomous coral snakes (genus Micrurus) display a vigorous, non-locomotory thrashing behavior that has previously been qualitatively described. Given the high contrast and colorful banding patterns of these snakes, this thrashing display is hypothesized to be a key component of a complex aposematic signal under strong stabilizing selection across species in a mimicry system. By experimentally testing snake response across simulated predator cues, we analyzed variation in the presence and expression of a thrashing display across five species of South American coral snakes. Although the major features of the thrash display were conserved across species, we found that predator cue type, snake body size, and species identity predict significant inter- and intraspecific variation in the propensity to perform a display, the duration of thrashing, and the curvature of snake bodies. We also found an interaction between curve magnitude and body location that clearly shows which parts of the display vary most across individuals and species. Our results suggest that contrary to the assumption that all Micrurus species and individuals perform the same display, a high degree of variation exists despite presumably strong selection to conserve a common signal. This quantitative behavioral characterization presents a new framework for analyzing the non-locomotory motions displayed by snakes in a broader ecological context, especially for signaling systems with complex interaction across multiple modalities.

Funder

University of Michigan MCubed

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Animal Science and Zoology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3