Incubation Temperature Affects Duckling Body Size and Food Consumption Despite No Effect on Associated Feeding Behaviors

Author:

Hope S F1ORCID,Kennamer R A2,Grimaudo A T1,Hallagan J J1,Hopkins W A1

Affiliation:

1. Department of Fish and Wildlife Conservation, Virginia Tech, Blacksburg, VA, USA

2. Savannah River Ecology Laboratory, University of Georgia, Aiken, SC, USA

Abstract

SynopsisDevelopmental conditions can have consequences for offspring fitness. For example, small changes (<1°C) in average avian incubation temperature have large effects on important post-hatch offspring phenotypes, including growth rate, thermoregulation, and behavior. Furthermore, average incubation temperatures differ among eggs within the same nest, to the extent (i.e., >1°C) that differences in offspring phenotypes within broods should result. A potential consequence of within-nest incubation temperature variation is inequality in behaviors that could cause differences in resource acquisition within broods. To investigate this, we incubated wood duck (Aix sponsa) eggs at one of two ecologically-relevant incubation temperatures (35°C or 36°C), formed mixed-incubation temperature broods after ducklings hatched, and conducted trials to measure duckling behaviors associated with acquisition of heat (one trial) or food (three trials). Contrary to our predictions, we found no effect of incubation temperature on duckling behaviors (e.g., time spent occupying heat source, frequency of feeding bouts). However, we found evidence that ducklings incubated at the higher temperature consumed more food during the 1-h feeding trials, and grew faster in body mass and structural size (culmen and tarsus) throughout the study, than those incubated at the lower temperature. Apparent food consumption during the trials was positively related to culmen length, suggesting that differences in food consumption may be driven by structural size. This could result in positive feedback, which would amplify size differences between offspring incubated at different temperatures. Thus, our study identifies incubation temperature as a mechanism by which fitness-related phenotypic differences can be generated and even amplified within avian broods.

Funder

National Science Foundation Graduate Research Fellowship Program

Virginia Tech Graduate Student Assembly Graduate Research Development Program

Institute for Critical Technology and Applied Science at Virginia Tech

U.S. Department of Energy

University of Georgia Research Foundation

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Animal Science and Zoology,Ecology, Evolution, Behavior and Systematics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3