Affiliation:
1. Department of Comparative Biomedical Sciences, Structure and Motion Laboratory, Royal Veterinary College, North Mymms, Hawkshead Lane, Hertfordshire, AL9 7TA, UK
2. Department of Ecology and Evolution, University of California, Irvine, CA, 94704, USA
Abstract
Abstract
Archosaurian reptiles (including living crocodiles and birds) had an explosive diversification of locomotor form and function since the Triassic approximately 250 million years ago. Their limb muscle physiology and biomechanics are pivotal to our understanding of how their diversity and evolution relate to locomotor function. Muscle contraction velocity, force, and power in extinct archosaurs such as early crocodiles, pterosaurs, or non-avian dinosaurs are not available from fossil material, but are needed for biomechanical modeling and simulation. However, an approximation or range of potential parameter values can be obtained by studying extant representatives of the archosaur lineage. Here, we study the physiological performance of three appendicular muscles in Nile crocodiles (Crocodylus niloticus). Nile crocodile musculature showed high power and velocity values—the flexor tibialis internus 4 muscle, a small “hamstring” hip extensor, and knee flexor actively used for terrestrial locomotion, performed particularly well. Our findings demonstrate some physiological differences between muscles, potentially relating to differences in locomotor function, and muscle fiber type composition. By considering these new data from a previously unstudied archosaurian species in light of existing data (e.g., from birds), we can now better bracket estimates of muscle parameters for extinct species and related extant species. Nonetheless, it will be important to consider the potential specialization and physiological variation among muscles, because some archosaurian muscles (such as those with terrestrial locomotor function) may well have close to double the muscle power and contraction velocity capacities of others.
Funder
European Research Council Horizon 2020 Advanced Investigator
Publisher
Oxford University Press (OUP)
Subject
Psychiatry and Mental health
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献