‘Drc’, a structurally novel ssDNA-binding transcription regulator of N4-related bacterial viruses

Author:

Boon Maarten1ORCID,De Zitter Elke2,De Smet Jeroen1,Wagemans Jeroen1,Voet Marleen1,Pennemann Friederike L1,Schalck Thomas1,Kuznedelov Konstantin3,Severinov Konstantin3ORCID,Van Meervelt Luc2,De Maeyer Marc4,Lavigne Rob1

Affiliation:

1. Department of Biosystems, Laboratory of Gene Technology, KU Leuven, Leuven 3001, Belgium

2. Department of Chemistry, Biomolecular Architecture, KU Leuven, Leuven 3001, Belgium

3. Waksman Institute, Rutgers, The State University, Piscataway, NJ 08854, USA

4. Department of Chemistry, Laboratory of Biomolecular Modelling and Design, KU Leuven, Leuven 3001, Belgium

Abstract

Abstract Bacterial viruses encode a vast number of ORFan genes that lack similarity to any other known proteins. Here, we present a 2.20 Å crystal structure of N4-related Pseudomonas virus LUZ7 ORFan gp14, and elucidate its function. We demonstrate that gp14, termed here as Drc (ssDNA-binding RNA Polymerase Cofactor), preferentially binds single-stranded DNA, yet contains a structural fold distinct from other ssDNA-binding proteins (SSBs). By comparison with other SSB folds and creation of truncation and amino acid substitution mutants, we provide the first evidence for the binding mechanism of this unique fold. From a biological perspective, Drc interacts with the phage-encoded RNA Polymerase complex (RNAPII), implying a functional role as an SSB required for the transition from early to middle gene transcription during phage infection. Similar to the coliphage N4 gp2 protein, Drc likely binds locally unwound middle promoters and recruits the phage RNA polymerase. However, unlike gp2, Drc does not seem to need an additional cofactor for promoter melting. A comparison among N4-related phage genera highlights the evolutionary diversity of SSB proteins in an otherwise conserved transcription regulation mechanism.

Funder

KU Leuven

European Research Council Consolidator

Research Foundation Flanders

Publisher

Oxford University Press (OUP)

Subject

Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3