The conserved 3′ UTR-derived small RNA NarS mediates mRNA crossregulation during nitrate respiration

Author:

Wang Chuan12ORCID,Chao Yanjie23ORCID,Matera Gianluca2,Gao Qian1,Vogel Jörg24

Affiliation:

1. Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200033, PR China

2. Institute for Molecular Infection Biology, University of Würzburg, D-97080 Würzburg, Germany

3. Howard Hughes Medical Institute, Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA 02111, USA

4. Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Center for Infection Research (HZI), D-97080 Würzburg, Germany

Abstract

AbstractSmall noncoding RNAs (sRNAs) from mRNA 3′ UTRs seem to present a previously unrecognized layer of bacterial post-transcriptional control whereby mRNAs influence each other's expression, independently of transcriptional control. Studies in Escherichia coli and Salmonella enterica showed that such sRNAs are natural products of RNase E-mediated mRNA decay and associate with major RNA-binding proteins (RBPs) such as Hfq and ProQ. If so, there must be additional sRNAs from mRNAs that accumulate only under specific physiological conditions. We test this prediction by characterizing candidate NarS that represents the 3′ UTR of nitrate transporter NarK whose gene is silent during standard aerobic growth. We find that NarS acts by Hfq-dependent base pairing to repress the synthesis of the nitrite transporter, NirC, resulting in mRNA cross-regulation of nitrate and nitrite transporter genes. Interestingly, the NarS-mediated repression selectively targets the nirC cistron of the long nirBDC-cysG operon, an observation that we rationalize as a mechanism to protect the bacterial cytoplasm from excessive nitrite toxicity during anaerobic respiration with abundant nitrate. Our successful functional assignment of a 3′ UTR sRNA from a non-standard growth condition supports the notion that mRNA crossregulation is more pervasive than currently appreciated.

Funder

National Natural Science Foundation of China

Shanghai Municipal Education Commission

German Research Council

Publisher

Oxford University Press (OUP)

Subject

Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3