Fine-scale forest structure, not management regime, drives occupancy of a declining songbird, the Olive-sided Flycatcher, in the core of its range

Author:

Hack Benjamin1,Cansler C Alina2ORCID,Peery M Zachariah3,Wood Connor M1ORCID

Affiliation:

1. K. Lisa Yang Center for Conservation Bioacoustics, Cornell Lab of Ornithology, Cornell University , Ithaca, New York , USA

2. W.A. Franke College of Forestry & Conservation, University of Montana , Missoula, Montana , USA

3. Department of Forest and Wildlife Ecology, University of Wisconsin–Madison , Madison, Wisconsin , USA

Abstract

Abstract Climate change, management legacies, pest outbreaks, and fire regimes are combining to pose a growing risk of broad-scale loss of forest cover throughout western North America. Already, habitat changes have been linked with declines in numerous bird species; understanding the relative importance of management regimes and habitat structure may be critical to conserving at-risk species. The Olive-sided Flycatcher (Contopus cooperi) is a declining songbird associated with tall, open forests in California’s Sierra Nevada, the core of its breeding range, where the management regimes of the National Park Service (NPS) and U.S. Forest Service (USFS) have led to divergent forest conditions over the past century. We combined a landscape-scale passive acoustic monitoring program, the BirdNET animal sound identification algorithm, and single-season occupancy models to explore the relationships between Olive-sided Flycatchers in the Sierra Nevada and both management regimes and fine-scale forest structure. Olive-sided Flycatcher site occupancy increased as canopy cover decreased relative to mean tree diameter, which is consistent with their preference for mature, open forests. These “open forest” conditions were most prevalent on NPS-managed lands, which is consistent with the assumption that the NPS management regime is more faithful to the historical conditions that had supported a larger Olive-sided Flycatcher population than at present. Thus, the support we found for a positive association with USFS-managed lands after controlling for “open forest” suggests that other habitat features are also important. Our results suggest that conservation strategies for Olive-sided Flycatcher breeding habitat should prioritize the protection and generation of open canopies in areas with large trees, as well as the identification of other important habitat features. Prescribed fire, mechanical thinning, and a return of Indigenous forest management practices could help to restore historical forest and fire conditions beneficial to this and other species with similar habitat requirements. Fine-scale alterations to forest structure can be implemented much more rapidly and at much broader scales than the imposition of strict protected status, suggesting that there may be multiple pathways to conservation when species respond to habitat at fine spatial scales.

Publisher

Oxford University Press (OUP)

Subject

Animal Science and Zoology,Ecology, Evolution, Behavior and Systematics

Reference54 articles.

1. Olive-sided Flycatcher (Contopus cooperi), version 1.0;Altman,2020

2. Forest composition, structure, and change in an old-growth mixed conifer forest in the Northern Sierra Nevada;Ansley;The Journal of the Torrey Botanical Society,1998

3. Uninformative parameters and model selection using Akaike’s Information Criterion;Arnold;The Journal of Wildlife Management,2010

4. Reconstructing the Landscape: An Environmental History, 1820–1960;Beesley,1996

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3