Influence of fine-scale habitat characteristics on sage-grouse nest site selection and nest survival varies by mesic and xeric site conditions

Author:

Brussee Brianne E1,Coates Peter S1ORCID,O’Neil Shawn T1,Ricca Mark A1,Dudko Jonathan E12,Espinosa Shawn P3,Gardner Scott C4,Casazza Michael L1,Delehanty David J2

Affiliation:

1. U.S. Geological Survey, Western Ecological Research Center , Dixon Field Station, Dixon, California , USA

2. Department of Biological Sciences, Idaho State University , Pocatello, Idaho , USA

3. Nevada Department of Wildlife , Reno, Nevada , USA

4. California Department of Fish and Wildlife , Sacramento, California , USA

Abstract

AbstractResource managers and scientists across western U.S. agencies seek methodologies for identifying environmental attributes important to both wildlife conservation and broad-scale land stewardship. The Greater Sage-Grouse (Centrocercus urophasianus; hereafter, sage-grouse) exemplifies a species in need of this broad-scale approach given widespread population declines that have resulted from loss and degradation of habitat from natural and anthropogenic disturbances. These include agricultural land conversion, conifer expansion, energy development, and wildfire coupled with ecological conversion by invasive plants such as cheatgrass (Bromus tectorum). Development of habitat assessments and conservation actions for sage-grouse benefit from studies that link demographic responses to habitat selection patterns. To address this, we examined nest survival of sage-grouse in relation to fine-scale habitat patterns (i.e., field-based habitat measurements) that influenced nest site selection, using data from nests of telemetered females at 17 sites over 6 years in Nevada and northeastern California, USA. Importantly, sites spanned mesic and xeric average precipitation conditions that contributed substantially to vegetation community structure across cold desert ecosystems of the North American Great Basin. Vegetative cover immediately surrounding sage-grouse nests was important for both nest site selection and nest survival, but responses varied between mesic and xeric sites. For example, while taller perennial grasses were selected at xeric sites, we found no evidence of selection for perennial grass at mesic sites, indicating a functional response to availability of habitat features between hydrographic regions. Furthermore, perennial grass height and forb height both had positive effects on nest survival at xeric sites, but we found varying effects at mesic sites. We emphasize that precipitation conditions driving ecosystem productivity vary regionally among sagebrush communities, shaping vegetation structure and suitable habitat conditions for nesting sage-grouse.

Funder

Nevada Department of Wildlife

California Department of Fish and Wildlife

Bureau of Land Management

U.S. Forest Service

U.S. Geological Survey

Publisher

Oxford University Press (OUP)

Subject

Animal Science and Zoology,Ecology, Evolution, Behavior and Systematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3