A unified approach for relationships among Green's function, normal modes and dispersion spectrum in layered elastic half-space, with corrected misconceptions on surface wave dispersion and testing

Author:

Lin Chih-Ping12,Pan Ernian12,Tran Quoc Kinh1,Wu Tsai-Jung1

Affiliation:

1. Department of Civil Engineering, National Yang Ming Chiao Tung University, 1001 University Rd. , Hsinchu 300, Taiwan

2. Disaster Prevention & Water Environment Research Center, National Yang Ming Chiao Tung University, 1001 University Rd. , Hsinchu 300, Taiwan

Abstract

SUMMARY In this paper, the global stiffness matrix [K] and the Fourier–Bessel series methods are proposed to derive the accurate Green's function and dynamic response in a form that is directly related to the dispersion curve and experimental dispersion spectrum. Detailed analyses are carried out for the two-layered half-space with different velocity profiles, including the homogeneous half-space as a special case. Our studies indicate that, in Rayleigh wave analysis, the original Rayleigh equation, instead of the rationalized Rayleigh equation as previously derived and used, should be used since the latter would contain extra non-physical roots. We further reveal and characterize three distinct types of leaky waves: the intrinsic surface leaky wave, the apparent Rayleigh mode with a frequency gap associated with a low-velocity half-space and the fast-guided P–SV wave in the layered medium with a high VS contrast between the upper layer and the lower half-space. All leaky modes can be captured by local minima of |det[K]| instead of tracing complex roots in other existing approaches. In the experimental estimation of dispersion curves for practical applications, we have observed that the truncation effect is the major source of uncertainty regardless of the wavefield transformation method utilized. Furthermore, the truncation effect is both location- and model-dependent, without a unique optimal near offset. As such, in order to reduce the uncertainty from the truncation effect, the receiver layout should be considered in the inversion of dynamic response, instead of relying on ensuring a minimum near offset. This becomes possible with the present fast and accurate complete dynamic Green's function by which all wave phenomena (including different types of leaky waves) and receiver locations can be considered in the wavefield transformation.

Publisher

Oxford University Press (OUP)

Subject

Geochemistry and Petrology,Geophysics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3