Interseismic deformation and strain-partitioning along the Main Köpetdag Fault, Turkmenistan, with Sentinel-1 InSAR time-series

Author:

Dodds N1ORCID,Daout S12,Walker R T1ORCID,Begenjev G3,Bezmenov Y3,Mirzin R3,Parsons B1

Affiliation:

1. COMET, Department of Earth Sciences, Oxford University, Oxford OX1 2JD, UK

2. CRPG, Université de Lorraine - CNRS, 54500 Vandœuvre-lès-Nancy, France

3. Institute of Seismology and Atmospheric Physics, Academy of Sciences of Turkmenistan, Aşgabat 744000, Turkmenistan

Abstract

SUMMARY The Main Köpetdag Fault (MKDF) is a predominantly right-lateral strike-slip fault that dissects the northern edge of the Köpetdag mountains of Turkmenistan and Iran. The fault represents the northernmost expression of deformation from the Arabia–Eurasia collision to the east of the Caspian Sea, and plays an important role facilitating the motion of the South Caspian Basin (SCB). Despite the kinematic significance of the MKDF, previous geodetic measurements of the slip-rate across the fault have been highly variable, with a recent geological slip-rate supporting evidence for rapid motion across the fault. To resolve this ambiguity, we derive Sentinel-1 InSAR time-series in both the ascending and descending LOS (line-of-sight) to measure interseismic motion across the MKDF. This implements a processing strategy for the correction and performance analysis of tropospheric models from GACOS (Generic Atmospheric Correction Online Service), which suggests a 25–40 per cent underestimation in the amplitude of the tropospheric path delay in this region. Modelling the rate of fault-parallel motion across the MKDF and combining this with a geological slip-rate constrains 9 ± 2 mm yr–1 right-lateral motion, along with a shallow locking depth of ≈6 km. The LOS time-series resolves path delays of greater than 1 mm yr–1 in both LOS geometries to the north of the MKDF, aligned with mapped frontal thrust scarps to the north of the MKDF. Modelling this as uplift from deformation across these frontal thrusts estimates 4 ± 2 mm yr–1 of shortening across the fault system. This implies that convergence measured with GNSS within the East Caspian Lowlands is partitioned across frontal thrusts to the north of the MKDF. Revising an Iran–Eurasia–SCB velocity triangle suggests that motion along the conjugate MKDF and Shahroud fault zones is representative of the motion of the SCB, which is moving at 10 ± 2 mm yr–1 in a direction of 330° ± 10° relative to Eurasia.

Funder

NERC

ESRC

Publisher

Oxford University Press (OUP)

Subject

Geochemistry and Petrology,Geophysics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3