A new anisotropic poroelasticity model to describe damage accumulation during cyclic triaxial loading of rock

Author:

Lyakhovsky Vladimir1ORCID,Panteleev Ivan2,Shalev Eyal1,Browning John34,Mitchell Thomas M5ORCID,Healy David6,Meredith Philip G5

Affiliation:

1. Geological Survey of Israel, Jerusalem, 9692100, Israel

2. Institute of Continuous Media Mechanics UB RAS, Laboratory of Solid Thermomechanics, Perm, 614013, Russia

3. Department of Geotechnical and Structural Engineering and Department of Mining Engineering, Pontificia Universidad Católica, Santiago, 7820436, Chile

4. Andean Geothermal Centre of Excellence, Universidad de Chile, Santiago, 8330015, Chile

5. Department of Earth Sciences, University College London, London WC1E 6BT, UK

6. School of Geosciences, University of Aberdeen, Aberdeen, AB24 3UE, UK

Abstract

SUMMARY Crustal rocks undergo repeated cycles of stress over time. In complex tectonic environments where stresses may evolve both spatially and temporally, such as volcanoes or active fault zones, these rocks may experience not only cyclic loading and unloading, but also rotation and/or reorientation of stresses. In such situations, any resulting crack distributions form sequentially and may therefore be highly anisotropic. Thus, the tectonic history of the crust as recorded in deformed rocks may include evidence for complex stress paths, encompassing different magnitudes and orientations. Despite this, the ways in which variations in principal stresses influence the evolution of anisotropic crack distributions remain poorly constrained. In this work, we build on the previous non-linear anisotropic damage rheology model by presenting a newly developed poroelastic rheological model which accounts for both coupled anisotropic damage and porosity evolution. The new model shares the main features of previously developed anisotropic damage and scalar poroelastic damage models, including the ability to simulate the entire yield curve through a single formulation. In the new model, the yield condition is defined in terms of invariants of the strain tensor, and so the new formulation operates with directional yield conditions (different values for each principal direction) depending on the damage tensor and triaxial loading conditions. This allows us to discern evolving yield conditions for each principal stress direction and fit the measured amounts of accumulated damage from previous loading cycles. Coupling between anisotropic damage and anisotropic compaction along with the damage-dependent yield condition produces a reasonable fit to the experimentally obtained stress–strain curves. Furthermore, the simulated time-dependent cumulative damage is well correlated with experimentally observed acoustic emissions during cyclic loading in different directions. As such, we are able to recreate many of the features of the experimentally observed directional 3-D Kaiser ‘damage memory’ effect.

Funder

Israel Science Foundation

NERC

Russian Science Foundation

Publisher

Oxford University Press (OUP)

Subject

Geochemistry and Petrology,Geophysics

Reference80 articles.

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3