The impact of vent geometry on the growth of lava domes

Author:

Mériaux Catherine A123ORCID,May Dave A4,Jaupart Claude5

Affiliation:

1. School of Earth, Atmosphere and Environment, Monash University, 9 Rainforest Walk Clayton, Victoria 3800, Australia

2. The Abdus Salam International Centre for Theoretical Physics (ICTP) Strada Costiera, 11 -­ I-­34151 Trieste, Italy

3. ICTP-East African Institute for Fundamental Research, KIST2 Building CST, Nyarugenge Campus, University of Rwanda, KN 7 Avenue, Kigali, Rwanda

4. Institute of Geophysics and Planetary Physics, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92037, USA

5. Institut de Physique du Globe de Paris, 1, rue Jussieu - 75238 Paris cedex 05, France

Abstract

SUMMARY Thick lava flows that are a feature of many volcanic fields on the Earth and Venus vary from sheet-like to nearly perfect axisymmetric domes. Here, we investigate how these geometrical characteristics depend on the shape of the feeder vent. We study the gravitational spreading of viscous lava erupting from elliptical vents onto a flat surface using 3-D numerical models. The aspect ratio of the vent, defined to be the major to minor axes ratio, varies between 1 and 25. In the limit of an aspect ratio of one, the vent is circular and spreading is axisymmetric. In the limit where the ratio is large, the vent behaves as a fissure. The numerical models rely on an isoviscous lava rheology and a constant volumetric eruption rate. In all cases, the initial phase of the dome’s evolution is in a lava-discharge dominated regime such that spreading is insignificant and the height of the dome increases at a constant rate over the vent area. For vent aspect ratios greater than five, three successive regimes of spreading are identified: 2-D spreading in the direction perpendicular to the major axis of the vent, a transient phase such that the dome shape evolves towards that of a circular dome and a late axisymmetric spreading phase that does not depend on the vent shape. These regimes are delimited by the times required for the flow thickness above the vent to reach a given height and for the flow to spread axisymmetrically up to a length equal to the semi-major axis of the vent. Numerical results for the flow height and runout length tend towards the similarity solutions in the 2-D and axisymmetric regimes. Two main implications for highly viscous (rhyolitic) fissure eruptions can be drawn. First, the fissure length determines the flow regimes. The longer the vent fissure length, the longer the early lava discharge regime and 2-D spreading perpendicular to the length of the fissure. Second, the aspect ratio of fissure-fed lava flows can be used as an indicator of the fissure length and the duration of lava discharge. The ellipticity of some terrestrial fissure-fed flows provides evidence for viscous gravity-driven spreading terminated before the onset of the axisymmetric regime. On the other hand, the circular domes on Venus appear to be the result of fissure-fed eruptions sustained enough for the spreading to reach the axisymmetric regime. We propose relationships providing estimates of the fissure length and the duration of lava discharge based on fossil dome dimensions.

Publisher

Oxford University Press (OUP)

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3