Can machine learning reveal precursors of reversals of the geomagnetic axial dipole field?

Author:

Gwirtz K1,Davis T2,Morzfeld M2,Constable C2ORCID,Fournier A3ORCID,Hulot G3

Affiliation:

1. NASA Postdoctoral Program Fellow, NASA Goddard Space Flight Center , Greenbelt, MD 20771, USA

2. Cecil H. and Ida M. Green Institute of Geophysics and Planetary Physics, Scripps Institution of Oceanography, University of California , San Diego, CA 92093-0225, USA

3. Université Paris Cité, Institut de Physique du Globe de Paris, CNRS , F-75005 Paris, France

Abstract

SUMMARY It is well known that the axial dipole part of Earth’s magnetic field reverses polarity, so that the magnetic North Pole becomes the South Pole and vice versa. The timing of reversals is well documented for the past 160 Myr, but the conditions that lead to a reversal are still not well understood. It is not known if there are reliable ‘precursors’ of reversals (events that indicate that a reversal is upcoming) or what they might be. We investigate if machine learning (ML) techniques can reliably identify precursors of reversals based on time-series of the axial magnetic dipole field. The basic idea is to train a classifier using segments of time-series of the axial magnetic dipole. This training step requires modification of standard ML techniques to account for the fact that we are interested in rare events—a reversal is unusual, while a non-reversing field is the norm. Without our tweak, the ML classifiers lead to useless predictions. Perhaps even more importantly, the usable observational record is limited to 0–2 Ma and contains only five reversals, necessitating that we determine if the data are even sufficient to reliably train and validate an ML algorithm. To answer these questions we use several ML classifiers (linear/non-linear support vector machines and long short-term memory networks), invoke a hierarchy of numerical models (from simplified models to 3-D geodynamo simulations), and two palaeomagnetic reconstructions (PADM2M and Sint-2000). The performance of the ML classifiers varies across the models and the observational record and we provide evidence that this is not an artefact of the numerics, but rather reflects how ‘predictable’ a model or observational record is. Studying models of Earth’s magnetic field via ML classifiers thus can help with identifying shortcomings or advantages of the various models. For Earth’s magnetic field, we conclude that the ability of ML to identify precursors of reversals is limited, largely due to the small amount and low frequency resolution of data, which makes training and subsequent validation nearly impossible. Put simply: the ML techniques we tried are not currently capable of reliably identifying an axial dipole moment (ADM) precursor for geomagnetic reversals. This does not necessarily imply that such a precursor does not exist, and improvements in temporal resolution and length of ADM records may well offer better prospects in the future.

Funder

NASA

Goddard Space Flight Center

Oak Ridge Associated Universities

University of California

US Office of Naval Research

NSF

EAR

Agence Nationale de la Recherche

Publisher

Oxford University Press (OUP)

Subject

Geochemistry and Petrology,Geophysics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3