Probabilistic model-error assessment of deep learning proxies: an application to real-time inversion of borehole electromagnetic measurements

Author:

Rammay Muzammil Hussain1ORCID,Alyaev Sergey2ORCID,Elsheikh Ahmed H3ORCID

Affiliation:

1. Department of Energy Resources, University of Stavanger, 4036 Stavanger, Norway, University of Stavanger , Stavanger, Norway

2. Department of Energy & Technology, NORCE Norwegian Research Centre, 5838 Bergen, Norway, NORCE , Bergen, Norway

3. School of Energy, Geoscience, Infrastructure and Society, Heriot-Watt University, EH14 4AS Edinburgh, UK, Heriot–Watt University , Edinburgh, UK

Abstract

SUMMARY The advent of fast sensing technologies allow for real-time model updates in many applications where the model parameters are uncertain. Once the observations are collected, Bayesian algorithms offer a pathway for real-time inversion (a.k.a. model parameters/inputs update) because of the flexibility of the Bayesian framework against non-uniqueness and uncertainties. However, Bayesian algorithms rely on the repeated evaluation of the computational models and deep learning (DL) based proxies can be useful to address this computational bottleneck. In this paper, we study the effects of the approximate nature of the deep learned models and associated model errors during the inversion of borehole electromagnetic (EM) measurements, which are usually obtained from logging while drilling. We rely on the iterative ensemble smoothers as an effective algorithm for real-time inversion due to its parallel nature and relatively low computational cost. The real-time inversion of EM measurements is used to determine the subsurface geology and properties, which are critical for real-time adjustments of the well trajectory (geosteering). The use of deep neural network (DNN) as a forward model allows us to perform thousands of model evaluations within seconds, which is very useful to quantify uncertainties and non-uniqueness in real-time. While significant efforts are usually made to ensure the accuracy of the DL models, it is widely known that the DNNs can contain some type of model-error in the regions not covered by the training data, which are unknown and training specific. When the DL models are utilized during inversion of EM measurements, the effects of the model-errors could manifest themselves as a bias in the estimated input parameters and as a consequence might result in a low-quality geosteering decision. We present numerical results highlighting the challenges associated with the inversion of EM measurements while neglecting model-error. We further demonstrate the utility of a recently proposed flexible iterative ensemble smoother in reducing the effect of model-bias by capturing the unknown model-errors, thus improving the quality of the estimated subsurface properties for geosteering operation. Moreover, we describe a procedure for identifying inversion multimodality and propose possible solutions to alleviate it in real-time.

Funder

Baker Hughes

Division of Antarctic Infrastructure and Logistics

University of Stavanger

Norwegian University of Science and Technology

NTNU

University of Bergen

Research Council of Norway

BP

ConocoPhillips

Publisher

Oxford University Press (OUP)

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3