Characterizing the cover across South Australia: a simple passive-seismic method for estimating sedimentary thickness

Author:

Agrawal Shubham1ORCID,Eakin Caroline M1ORCID,O’Donnell John2ORCID

Affiliation:

1. Research School of Earth Sciences, Australian National University , Canberra, 2601, Australia

2. Geological Survey of South Australia, Department for Energy and Mining , Adelaide, 5000, Australia

Abstract

SUMMARY A blanket of sedimentary and regolith material covers approximately three-quarters of the Australian continent, obscuring the crustal geology below and potential mineral resources within. Sedimentary basins also trap seismic energy increasing seismic hazard and generating noisy seismograms that make determining deeper crustal and lithospheric structure more challenging. The most fundamental question that can first be asked in addressing these challenges is how thick are the sediments? Borehole drilling and active seismic experiments using a controlled seismic source (e.g. vibroseis) provide excellent constraints, but they are limited in geographical coverage due to their expense, especially when operating in remote areas. On the other hand, passive-seismic experiments that involve the deployment of seismic receivers only (i.e. seismometers) are relatively low-cost and portable, providing a practical alternative for initial surveys. Here we utilize receiver functions obtained for both temporary and permanent seismic stations in South Australia, covering regions with a diverse sediment distribution. We present a straightforward method to determine the basement depth based on the arrival time of the P-converted-to-S phase generated at the boundary between the crustal basement and sedimentary strata above. Utilizing the available borehole data, we establish a simple predictive relationship between Ps arrival time and the basement depth, which could then be applied to other sedimentary basins with some consideration. The method is found to work best for Phanerozoic sediments and offers a way to determine the sediment–basement interface in unexplored areas requiring only temporary seismic stations deployed for < 6 months.

Funder

Australian Research Council

ANS

Australian National University

Publisher

Oxford University Press (OUP)

Subject

Geochemistry and Petrology,Geophysics

Reference68 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3