Comparisons between non-interferometric and interferometric passive surface wave imaging methods—towards linear receiver array

Author:

Cheng Feng12ORCID,Xia Jianghai1,Xu Zongbo3ORCID,Ajo-Franklin Jonathan B24

Affiliation:

1. School of Earth Sciences, Zhejiang University , 38 Zheda Rd., Hangzhou, Zhejiang 310027, China

2. Department of Earth, Environmental, and Planetary Sciences, Rice University , 6100 Main St., Houston, TX 77005, USA

3. Institut de Physique du Globe de Paris , 75205 Paris Cedex 13, France

4. Lawrence Berkeley National Laboratory , 1 Cyclotron Rd., Berkeley, CA 94720, USA

Abstract

SUMMARYPassive seismic methods in highly populated urban areas have gained much attention from the geophysics and civil engineering communities. Linear arrays are usually deployed for passive surface wave investigations because of their high convenience, and passive surface wave imaging methods commonly used for linear arrays can be grouped as non-interferometric methods (e.g. passive multichannel analysis of surface wave, refraction microtremor) and interferometric methods (e.g. multichannel analysis of passive surface waves and spatial autocorrelation). It is well known that the seismic interferometry method is able to retrieve Green’s function between inter-station pairs based on passive seismic data and that is how interferometric methods work. Although non-interferometric methods are also popular and effective in near-surface seismic imaging, particularly in the geotechnical industry, there is no theoretical proof to clarify the accuracy and/or the bias of these methods. In this study, we use numerical derivations and simulations to demonstrate the underlying physics for both non-interferometric and interferometric methods, under two common noise source environments including a homogeneous source distribution and a dominant in-line source distribution. We also prove the strength of interferometric methods for accurate dispersion imaging over the non-interferometric methods, and provide a way to estimate the biases in non-interferometric measurements. Finally, we present comprehensive comparisons between different passive surface wave methods with three typical field examples considering various observation systems.

Funder

National Natural Science Foundation of China

Publisher

Oxford University Press (OUP)

Subject

Geochemistry and Petrology,Geophysics

Reference146 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3