High-resolution velocity estimation from surface-based common-offset GPR reflection data

Author:

Liu Yu1,Irving James1ORCID,Holliger Klaus1ORCID

Affiliation:

1. Institute of Earth Sciences, University of Lausanne, CH-1015 Lausanne, Switzerland

Abstract

SUMMARY Surface-based common-offset ground-penetrating radar (GPR) reflection profiling is a popular geophysical exploration technique for obtaining high-resolution images of the shallow subsurface in a cost-effective manner. One drawback of this technique is that, without complementary borehole information in form of dielectric permittivity and/or porosity logs along the profile, it is currently not possible to obtain reliable estimates of the high-frequency electromagnetic velocity distribution of the probed subsurface region. This is problematic because adequate knowledge of the velocity is needed for accurate imaging and depth conversion of the data, as well as for quantifying the distribution of soil water content. To overcome this issue, we have developed a novel methodology for estimating the detailed subsurface velocity structure from common-offset GPR reflection measurements, which does not require additional conditioning information. The proposed approach combines two key components: diffraction analysis is used to infer the smooth, large-scale component of the velocity distribution, whereas the superimposed small-scale fluctuations are inferred via inversion of the reflected wavefield. We test and validate our method on two synthetic data sets having increasing degrees of complexity and realism before applying it to a field example from the Boise Hydrogeophysical Research Site, where independent control data in the form of neutron–neutron porosity logs are available for validation. The results obtained demonstrate the viability and robustness of the proposed approach. Further, due to its efficiency, both in terms of field effort and computational cost, the method can be readily extended to 3-D, which further enhances its attractiveness compared to multi-offset-based GPR velocity estimation techniques.

Funder

China Scholarship Council

Publisher

Oxford University Press (OUP)

Subject

Geochemistry and Petrology,Geophysics

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3