A GNSS velocity field for crustal deformation studies: The influence of glacial isostatic adjustment on plate motion models

Author:

Vardić Katarina1ORCID,Clarke Peter J1ORCID,Whitehouse Pippa L2ORCID

Affiliation:

1. School of Engineering, Newcastle University , Newcastle upon Tyne, NE17RU, UK

2. Department of Geography, Durham University , Durham DH13LE, UK

Abstract

SUMMARYThe two main causes of global-scale secular deformation of the Earth are tectonic plate motion and glacial isostatic adjustment (GIA). We create a bespoke global 3D GNSS surface velocity field ‘NCL20’ to investigate tectonic plate motion and the effect of GIA on plate motion models (PMMs), drawing on a set of 1D and 3D GIA model predictions. The main motivation for creating NCL20 is to include a larger number of GNSS sites in the most GIA-affected areas of investigation, namely North America, Europe, and Antarctica. We do this using the IGS repro2 data and other similarly processed GNSS data sets. Our final GNSS velocity field has horizontal uncertainties mostly within ±0.5 mm yr–1 and vertical uncertainties mostly within ±1 mm yr–1 (at 95 per cent confidence), which make it suitable for testing GIA models. We generate a suite of 117 global GIA model predictions by combining three different ice history models (ICE-5G, ICE-6G and W12) with a range of 1D and 3D Earth models. By subtracting this ensemble from the GNSS velocity field, we identify and compare a range of PMMs which are expected to be unaffected by GIA. Our method allows us to include GNSS sites that are typically excluded from PMM estimations due to their location in GIA-affected regions. We demonstrate that significant GIA-related horizontal motion outside of the rapidly uplifting regions may bias PMMs if left uncorrected. Based on their ability to explain the observed surface velocity field, a group of best-performing GIA models is selected for three regions of interest: North America, Europe and Antarctica. The range of GIA predictions in each best-performing group is assumed to represent the uncertainty in regional GIA modelling insofar as it can be constrained by present-day geodetic velocities. In the horizontal component, we note that 3D GIA models show more variation in the direction of predicted velocities than 1D GIA models, confirming that horizontal velocities are strongly sensitive to lateral variations in Earth structure. Furthermore, for Antarctica the variation in predicted GIA vertical velocities suggests that the total GIA contribution to annual gravimetric mass change ranges from –3 to 22 Gt yr–1 depending on which of the best-performing GIA models is used.

Funder

Natural Environment Research Council

Publisher

Oxford University Press (OUP)

Subject

Geochemistry and Petrology,Geophysics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3