2-D joint inversion of semi-airborne CSEM and LOTEM data in eastern Thuringia, Germany

Author:

Cai Ji1,Yogeshwar Pritam1,Mörbe Wiebke1,Smirnova Maria12,Haroon Amir3,Becken Michael2,Tezkan Bülent1

Affiliation:

1. Institute of Geophysics and Meteorology, University of Cologne, D-50923 Cologne, Germany

2. Institute of Geophysics, WWU Münster, D-48149 Münster, Germany

3. GEOMAR Helmholtz Centre for Ocean Research, D-24148 Kiel, Germany

Abstract

SUMMARY Various electromagnetic (EM) techniques have been developed for exploring natural resources. The novel frequency-domain semi-airborne controlled source electromagnetic (semi-AEM) method takes advantages of both ground and airborne techniques. It combines ground-based high-power electrical dipole sources with large-scale and spatially densely covered magnetic fields measured via airborne receivers. The method can survey the subsurface down to approximately 1000 m and is particularly sensitive towards conductive bodies (e.g. mineralized bodies) in a more resistive host environment. However, the signal-to-noise ratio of semi-AEM is lower than that of ground-based methods such as long-offset transient electromagnetics (LOTEM), mainly due to the limited stacking time and motion-induced noise. As a result, the semi-AEM often has reduced depth of investigation in comparison to LOTEM. One solution to overcome these flaws is to analyse and interpret semi-AEM data together with information from other EM methods using a joint inversion. Since our study shows that LOTEM and semi-AEM data have complementary subsurface resolution capabilities, we present a 2-D joint inversion algorithm to simultaneously interpret frequency-domain semi-AEM data and transient electric fields using extended dipole sources. The algorithm has been applied to the field data acquired in a former mining area in eastern Thuringia, Germany. The 2-D joint inversion combines the complementary information and provides a meaningful 2-D resistivity model. Nevertheless, obvious discrepancies appear between the individual and joint inversion results. Consequent synthetic modelling studies illustrate that the discrepancies occur because of (i) differences in lateral and depth resolution between the semi-AEM and LOTEM data caused by different measuring configurations, (ii) different measured EM components and (iii) differences in the error weighting of the individual data sets. Additionally, our synthetic study suggests that more flexible land-based configurations with sparse receiver locations are possible in combination with semi-AEM without a significant loss of target resolution, which is promising for accelerating data acquisition and for survey planning and logistics, particularly when measuring in inaccessible areas.

Funder

Federal Ministry of Education and Research

Publisher

Oxford University Press (OUP)

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3