Upscaling and downscaling Monte Carlo ensembles with generative models

Author:

Scheiter Matthias1ORCID,Valentine Andrew12ORCID,Sambridge Malcolm1ORCID

Affiliation:

1. Research School of Earth Sciences, Australian National University, Canberra, Acton ACT 0200, Australia

2. Department of Earth Sciences, Durham University, Durham DH1 3LE, United Kingdom

Abstract

SUMMARY Monte Carlo methods are widespread in geophysics and have proved to be powerful in non-linear inverse problems. However, they are associated with significant practical challenges, including long calculation times, large output ensembles of Earth models, and difficulties in the appraisal of the results. This paper addresses some of these challenges using generative models, a family of tools that have recently attracted much attention in the machine learning literature. Generative models can, in principle, learn a probability distribution from a set of given samples and also provide a means for rapid generation of new samples which follow that approximated distribution. These two features make them well suited for application to the outputs of Monte Carlo algorithms. In particular, training a generative model on the posterior distribution of a Bayesian inference problem provides two main possibilities. First, the number of parameters in the generative model is much smaller than the number of values stored in the ensemble, leading to large compression rates. Secondly, once trained, the generative model can be used to draw any number of samples, thereby eliminating the dependence on an often large and unwieldy ensemble. These advantages pave new pathways for the use of Monte Carlo ensembles, including improved storage and communication of the results, enhanced calculation of numerical integrals, and the potential for convergence assessment of the Monte Carlo procedure. Here, these concepts are initially demonstrated using a simple synthetic example that scales into higher dimensions. They are then applied to a large ensemble of shear wave velocity models of the core–mantle boundary, recently produced in a Monte Carlo study. These examples demonstrate the effectiveness of using generative models to approximate posterior ensembles, and indicate directions to address various challenges in Monte Carlo inversion.

Funder

Australian National University

CSIRO

Australian Research Council

Australian Government

Publisher

Oxford University Press (OUP)

Subject

Geochemistry and Petrology,Geophysics

Reference49 articles.

1. Deep learning-driven velocity model building workflow;Araya-Polo;Leading Edge,2019

2. Wasserstein generative adversarial networks;Arjovsky,2017

3. A note on the generation of random normal deviates;Box;Ann. Math. Statist.,1958

4. Velocity variations and uncertainty from transdimensional P-wave tomography of North America;Burdick;Geophys. J. Int.,2017

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3