The use of weighted self-organizing maps to interrogate large seismic data sets

Author:

Meyer S G12ORCID,Reading A M2ORCID,Bassom A P2ORCID

Affiliation:

1. Institute of Mine Seismology , 19 Jeanine Street, Sudbury, ON P3B 0E5, Canada

2. School of Natural Sciences, University of Tasmania , Private Bag 37, Hobart, Tasmania 7001, Australia

Abstract

SUMMARY Modern microseismic monitoring systems can generate extremely large data sets with signals originating from a variety of natural and anthropogenic sources. These data sets may contain multiple signal types that require classification, analysis and interpretation: a considerable task if done manually. Machine learning techniques may be applied to these data sets to expedite and improve such analysis. In this study, we apply an unsupervised technique, the Self-Organizing Map (SOM), to high-volume data recorded by an in-mine microseismic network. This represents a good example of a large seismic data set that contains a wide range of signals, owing to the diversity of source processes occurring within the mine. The signals are quantified by extracting a number of features (temporal and spectral) from the waveforms which are provided as input data for the SOM. We develop and implement a weighted variant of the SOM in which the contributions of various different features to the training of the map are allowed to evolve. The standard and weighted SOMs are applied to the data, and the output maps compared. Both variants are able to separate source types based on the waveform characteristics, allowing for rapid, automatic classification of signals and the ability to find sources with similar waveforms. Fast classification of such signals provides practical benefit by automatically discarding waveforms associated with anthropogenic sources within the mine while seismic signals originating from genuine microseismic events, which constitute a small fraction of all signals, can be prioritized for subsequent processing and analysis. The weighted variant provides an exploratory tool through quantification of the contribution of different features to the clustering process. This helps to optimize the performance of the SOM through the identification of redundant features. Furthermore, those features that are assigned large weights are considered to be more representative of the source generation processes as they contribute more to the cluster separation process. We apply weighted SOMs to data from a mine recorded during two different time periods, corresponding to different stages of the mine development. Changes in feature importance and in the observed distribution of feature values indicate evolving source generation processes and may be used to support investigatory analysis. The weighted SOM therefore represents an effective tool to help manage and investigate large seismic data sets, providing both practical benefit and insight into underlying event mechanisms.

Publisher

Oxford University Press (OUP)

Subject

Geochemistry and Petrology,Geophysics

Reference32 articles.

1. Application of feature selection methods for automated clustering analysis: a review on synthetic datasets;Ahmad;Neural. Comput. Appl.,2018

2. A novel Self-Organizing Map (SOM) learning algorithm with nearest and farthest neurons;Chaudhary;Alexand. Eng. J.,2014

3. Bootstrapping self-organising maps to assess the statistical significance of local proximity;de Bodt,2000

4. Discrimination of mine seismic events and blasts using the fisher classifier, naive Bayesian classifier and logistic regression;Dong;Rock Mech. Rock Eng.,2016

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Siamese Unsupervised Clustering For Removing Uncertainty In Microseismic Signal Labelling;IGARSS 2024 - 2024 IEEE International Geoscience and Remote Sensing Symposium;2024-07-07

2. Analysis and Interpretation of Deep Convolutional Features Using Self-organizing Maps;Studies in Big Data;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3