How have thick evaporites affected early seafloor spreading magnetic anomalies in the Central Red Sea?

Author:

Okwokwo Oke I1ORCID,Mitchell Neil C1ORCID,Shi Wen2,Stewart I C F3,Izzeldin A Y4

Affiliation:

1. Department of Earth and Environmental Sciences, University of Manchester , Manchester M139PL, UK

2. Institute of Geophysics, China Earthquake Administration , Minzudaxuenanlu, Haidian District, 100081 Beijing, China

3. Stewart Geophysical Consultants Pty. Ltd , Adelaide, South Australia 5069, Australia

4. Awasconrc , Gereif W, H4, Bld 376, Khartoum, POB 410, Khartoum, Sudan

Abstract

SUMMARYThe axial region of the Central Red Sea has been shown to be floored by oceanic crust, but this leaves the low amplitudes of off-axis magnetic anomalies to be explained.  Furthermore, if seafloor spreading occurred in the late Miocene, it is unclear how that occurred as widespread evaporites were being deposited then and may have covered the spreading centre. In this study, we derive crustal magnetization for a constant-thickness source layer within the uppermost basement by inverting aeromagnetic anomalies using basement depths derived from seismic reflection and gravity data.  Peak-to-trough variations in magnetization away from the axis are found to be slightly less than half of those of normal oceanic crust, but not greatly diminished, and hence the magnetic anomalies are mostly reduced by the greater depth of basement, which is depressed by isostatic loading by the evaporites (kilometres in thickness in places). There is no relationship between seafloor spreading anomalies and the modern distribution of evaporites mapped out using multibeam sonar data; magnetizations are still significant even where the basement lies several kilometres under the evaporites. This suggests that magnetizations have not been more greatly affected by alteration under the evaporites than typically exposed oceanic crust. A prominent magnetization peak commonly occurs at 60–80 km from the axis on both tectonic plates, coinciding with a basement low suggested previously to mark the transition to continental crust closer to the coasts.  We suggest an initial burst of volcanism occurred at Chron 5 (at ∼10 Ma) to produce this feature. Furthermore, an abrupt change is found at ∼5 Ma from low-frequency anomalies off-axis to high-frequency anomalies towards the present axis. This potentially represents the stage at which buried spreading centres became exposed. In this interpretation, intrusions such as sills at the buried spreading centre led to broad magnetic anomalies, whereas the later exposure of the spreading centre led to a more typical development of crustal magnetization by rapid cooling of extrusives.

Funder

Tertiary Education Trust Fund

Publisher

Oxford University Press (OUP)

Subject

Geochemistry and Petrology,Geophysics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3