Affiliation:
1. Institut des Sciences de la Terre, Université Grenoble Alpes , Grenoble, 38400 Saint-Martin-d’Hères, France
2. FEBUS-Optics , 64000 Pau, France
Abstract
SUMMARY
We explored the potential of fibre optics coupled with distributed acoustic sensing (DAS) to measure the thickness and Young’s modulus of an ice layer, using the properties of guided seismic waves. During two winter seasons (2020 and 2021), an optical fibre was deployed over one of the frozen Roberts Mountain lakes (at 2400 m a.s.l) near Grenoble (France) and we measured both the continuous ambient seismic noise as well as signals generated by active sources (hammer), with a DAS interrogator. Following a Bayesian scheme, we inverted the dispersion curves of longitudinal and flexural guided waves retrieved from the analysis of active shot gathers and obtained Young’s modulus E = 3.4 ± 0.1 GPa and ice thickness h = 47 ± 1 cm from the second-year data. The ice thickness was consistent with field measurements. Field observations of porous and/or fracture ice may explain the relatively low effective Young’s modulus (relative to pure ice), which may also be affected by a snow layer not included in the model. The drastic improvements in the inversion results between the two years are related to better coupling conditions (drone deployment before early freezing), more appropriate acquisition parameters (2 m gauge length), and the upper snow layers (less thick and less heterogeneous in the second year). Moreover, we were able to use the non-dispersive low-frequency noise associated with gravity waves to estimate the lake depth H = 5 m which is compatible with independent observations. The use of DAS to record guided seismic waves could then appear as a relevant tool for monitoring environments like floating ice shelves and sea ice.
Funder
Agence Nationale de la Recherche
Auvergne-Rhône-Alpes region
Publisher
Oxford University Press (OUP)
Subject
Geochemistry and Petrology,Geophysics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献