Comparing and integrating artificial intelligence and similarity search detection techniques: application to seismic sequences in Southern Italy

Author:

Scotto di Uccio Francesco1ORCID,Scala Antonio12ORCID,Festa Gaetano12,Picozzi Matteo1,Beroza Gregory C3

Affiliation:

1. Department of Physics ‘Ettore Pancini’, University of Napoli Federico II , 80126 Napoli, Italy

2. Istituto Nazionale di Geofisica e Vulcanologia , Sezione di Roma 1, 00143 Roma, Italy

3. Department of Geophysics, Stanford University , Stanford, CA 94305, USA

Abstract

SUMMARYUnderstanding mechanical processes occurring on faults requires detailed information on the microseismicity that can be enhanced today by advanced techniques for earthquake detection. This problem is challenging when the seismicity rate is low and most of the earthquakes occur at depth. In this study, we compare three detection techniques, the autocorrelation FAST, the machine learning EQTransformer, and the template matching EQCorrScan, to assess their ability to improve catalogues associated with seismic sequences in the normal fault system of Southern Apennines (Italy) using data from the Irpinia Near Fault Observatory (INFO). We found that the integration of the machine learning and template matching detectors, the former providing templates for the cross-correlation, largely outperforms techniques based on autocorrelation and machine learning alone, featuring an enrichment of the automatic and manual catalogues of factors 21 and 7, respectively. Since output catalogues can be polluted by many false positives, we applied refined event selection based on the cumulative distribution of their similarity level. We can thus clean up the detection lists and analyse final subsets dominated by real events. The magnitude of completeness decreases by more than one unit compared to the reference value for the network. We report b-values associated with sequences smaller than the average, likely corresponding to larger differential stresses than for the background seismicity of the area. For all the analysed sequences, we found that main events are anticipated by foreshocks, indicating a possible preparation process for main shocks at subkilometric scales.

Publisher

Oxford University Press (OUP)

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3